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1 Introduction

Mortality in the first 28 days of life accounts for over 2.5 Million deaths each year and

contributes an increasing share of under-5 deaths globally (Wang et al., 2016). Most neonatal

deaths are believed to be preventable at comparatively low cost (Bhutta et al., 2014), but the

expansion of general health care around birth in low-income countries often results in no- or

small decreases (e.g., Powell-Jackson et al., 2015; Arulampalam et al., 2017; Van de Poel et al.,

2016; Fitzpatrick, 2018), calling for more research into what specific interventions work at

scale and for whom.1

One leading cause of neonatal mortality is blood infection or “neonatal sepsis”. It is es-

timated to kill 400,000 children annually, most of them in very low-income settings where

unsanitary delivery- and living conditions are common (Liu et al., 2016).2 Three randomized

controlled trials (RCT) in South Asia brought hopes that the simple preventive application of

the disinfectant chlorhexidine (CHX) to the umbilical cord stump may eradicate this condition

(see Mullany et al., 2006; El Arifeen et al., 2012; Soofi et al., 2012, who report a 20-38%

decrease in neonatal mortality). In response, the World Health Organization (WHO) first rec-

ommended CHX use in 2013 — for home births in high-mortality environments (WHO, 2015).

But replication failed in two further RCTs in Southeast Africa, leading experts to express doubts

about the effectiveness of CHX at scale and the WHO to further restrict its recommended use

(Semrau et al., 2016; Sazawal et al., 2016; Osrin and Colbourn, 2016; WHO, 2022).

This paper answers three open questions: (i) Can a CHX cord care intervention reduce

neonatal mortality outside experimental conditions?; (ii) What variables can, empirically, best

account for the heterogeneity of the effect of CHX on neonatal survival?; and (iii) Could an

alternative targeting policy to the WHO’s past and current guidelines further reduce neonatal

mortality?

Our first contribution is to provide the first estimates of the effect of a CHX cord care

1This is in contrast to historical evidence showing that health interventions around birth dramatically improved
neonatal survival in high-income countries (Lazuka, 2018, 2021).

2Verbal autopsy estimates of causes of neonatal death carried out in various districts of Nepal outside experi-
mental trials report between 38-47% of neonatal deaths due to perinatal infection or sepsis specifically, compared
to 26-38% across selected areas of India, Malawi and Bangladesh (Fottrell et al., 2015; Khanal et al., 2011; Erchick
et al., 2022).
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intervention outside an experimental setting, which we do in a nationally representative sample

for Nepal. Concerns about the scalability of experimental findings typically emphasize factors

which lead to smaller treatment effects at scale (Al-Ubaydli et al., 2017). But in the case of

trials of preventive health care measures, the treatment effect might be muted due to the lack

of a pure control group (El Arifeen et al., 2012; Semrau et al., 2016). For instance, subjects

involved in CHX trials are referred to the hospital if signs of cord infection appear during the

frequent research team visits. Indeed, in both trials finding no significant effect on mortality,

the authors note that the neonatal mortality rate (NMR) was between 32 percent and 40 percent

lower than in the most recent Demographic and Health Survey for the relevant area — even in

the control group. Many factors may therefore lead to differences in CHX- and other preventive

treatment effects in- and outside an experimental setting, in a direction that is unclear a priori.

Our second contribution is to apply state-of-the-art machine-learning (ML) techniques

(Athey et al., 2019; Athey and Wager, 2021) to understand how CHX treatment effects depend

on observable characteristics of individuals and/or districts — which vary much across our na-

tionally representative sample — and then identify an optimal targeting policy that takes this

heterogeneity into account. Meta-analyses of existing randomized trials (Imdad et al., 2013;

Sankar et al., 2016; López-Medina et al., 2019) have important limitations due to the small

number of included studies and the possibility that heterogeneous results by place of birth may

be confounded by other differences across studies. The use of ML methods to study heteroge-

neous treatment effects is especially valuable in the absence of a pre-analysis plan for analyzing

heterogeneity. This approach has embedded robustness checks in the form of cross-validation

and allows a high degree of flexibility in identifying sources of heterogeneity (Varian, 2014;

Athey and Imbens, 2016). In our case, causal forest estimates show for instance that stark dif-

ferences in average predicted treatment effects by home vs. facility delivery may hide much

overlap between the two distributions, so that many babies born in facilities may also benefit

from CHX cord care despite the WHO recommending between 2013 and 2022 the use of CHX

exclusively for home births (in settings with neonatal mortality above 30 per 1000) (WHO,

2015).

Our third contribution is to take the findings obtained in our nationally-representative,
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Nepalese observational data, and use them to predict the effect of implementing the same pro-

gram in the five regions in- and outside Nepal where CHX trials have been carried out. More

specifically, we report predicted treatment effects of a program similar to that rolled out in

Nepal — including similar patterns of compliance conditional on covariates — if it were hypo-

thetically extended to samples from the five RCT regions drawn from nationally representative

surveys. To do so we use the extrapolation approach due to Dahabreh et al. (2020) as imple-

mented in Tibshirani et al. (2022), which provides doubly robust treatment effect estimates that

put more weight on estimates that are more similar to the out-of-sample observations. Given

differences in the exact nature of the intervention between the Nepalese roll-out and the trials,

as well as, crucially, the absence of a pure control in the various trials, the effects we pre-

dict should not be expected to match experimental findings closely even if we had access to

the experimental microdata and our heterogeneity analysis based on the Nepalese roll-out was

fully externally valid.3 Our exercise however serves as a sanity check on our heterogeneity

analysis as well as illustrates the informativeness for external samples of the treatment effect

heterogeneity uncovered in our quasi-experimental setting.

The first country to introduce CHX cord cleansing nationwide is Nepal. We exploit plausi-

bly exogenous variation in the timing of the expansion of the Chlorhexidine Navi(Cord) Care

Program across districts of Nepal using data from the nationally representative 2016 Nepal De-

mographic and Health Survey (DHS). After piloting the program in 4 out of 75 districts from

late 2009, the CHX cord care program was quickly scaled-up across the rest of the country

(see Appendix Figure A.1). By 2015, 75 percent of the population was covered by the program

(Department of Health Services, 2015).

Two-way fixed effects estimates indicate that, overall, the CHX program decreased neonatal

mortality by 1.8 percentage points or 43 percent compared to the control group mean. Our

conclusions are robust to comprehensive robustness checks. In particular, we find that a placebo

treatment “switching on” 6 months before the actual roll-out of the CHX program in the district

3A growing body of work develops methods to systematically combine observational and experimental data to
address the shortcomings of one- and/or the other or reconcile them. Abstracting from the differences in treatment
between CHX trials and the Nepalese roll-out, lack of access to the relevant experimental microdata means that
we are unable to implement the innovative methods proposed by Athey et al. (2020); Gechter and Meager (2022);
Kowalski (2023).
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has no effect, that the CHX program is not associated with a decrease in mortality between 2

and 12 months after birth, that estimates based on within-mother variation in treatment exposure

are very similar to estimates exploiting within-district variation, and that the effect of the CHX

program is observed independently of other neonatal health interventions.

Turning to our heterogeneity analysis, two-way fixed effects estimates show that children

only benefit from CHX application, on average, if they are predicted to be born at home, in

line with WHO recommended use during 2013-2022. Place of delivery is however likely to

proxy for risk factors such as hygiene conditions and healthcare at- and shortly after birth and

health endowment at birth. To better describe the treatment effect heterogeneity we observe,

we turn to machine learning. Our causal forest detects significant heterogeneity in treatment

effects, and when comparing the lowest- with the highest treatment effect tertiles, we find large,

statistically significant treatment effects in the two top tertiles of treatment effect magnitude

but no significant effect in the bottom tertile. Importantly, only a quarter of the variation in

conditional treatment effects comes from differences in variables which the WHO has ever

recommended considering to guide the use of CHX.

We then apply Athey and Wager (2021)’s approach to identify a targeting policy which

would asymptotically result in the largest gains in neonatal survival which could be obtained

for a given level of policy complexity, and compare this optimal policy — from the point of

view of neonatal survival — to past and present WHO recommendations. We find that WHO

recommended policies effectively target about a third of the population with returns to treatment

as high as any other but that they miss many children whose survival chances could significantly

benefit from CHX treatment.

Finally, after applying the causal forest to our nationally representative Nepalese dataset, we

take advantage of the international comparability of the DHS and predict doubly robust average

treatment effects of implementing a program similar to the Nepalese CHX national roll out in

five different DHS samples corresponding to the subnational regions and time periods where

the five CHX trials took place. We predict large, statistically significant decreases in neonatal

mortality in the three regions where CHX trials led to significant decreases in mortality and we

predict much smaller, statistically insignificant decreases in mortality in the two regions where
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CHX trials failed to decrease neonatal mortality.

In the next section, we give an overview of early life mortality trends and CHX cord care

in Nepal. Section 3 presents the data and identification strategy. The regression results for

the mean treatment effect and robustness checks are reported in Section 4. Section 5 explores

heterogeneity in the effect of CHX application using both the two-way fixed effects model and

machine learning and derives lessons for policy targeting. Section 6 extrapolates our quasi-

experimental heterogeneity analysis to samples drawn from the five RCT studies settings and

compares these predictions with experimental estimates of the effect of the trialed interventions.

Section 7 concludes.

2 Background

2.1 Evolution of Neonatal Mortality in Nepal

Nepal is a landlocked country situated between China and India which is home to 28.1

Million people. The country’s Human Development Index ranks only 143 out of 191 (in 2021).

The country saw a long period of reduction in NMR which ended in 2005, when it was

followed by a period of stagnation until 2010 (Figure 1). This stagnation came to an end in

2011, as NMR dropped to 21 per 1,000 during 2012-2016 — a 36% decline relative to the

previous 10-year period Ministry of Health [Nepal] and New ERA and ICF (2017).

The sharp decrease in NMR from 2011 to 2016 coincides with the acceleration of the roll-

out of CHX cord application through the Chlorhexidine Navi(Cord) Care Program (CHX-NCP)

(see Figure 1). Strikingly, since the completion of the program roll-out, there has been no

further reduction of NMR according to the latest figures (Ministry of Health and Population,

Nepal; New ERA; and ICF, 2022).

2.2 Details of the Chlorhexidine Cord Care Program

Program Objective and Components. CHX-NCP was a $3.9 million program funded mainly

by bilateral donors (US, Norway, Canada, UK) and the Bill & Melinda Gates Foundation and

was designed to support the Government of Nepal to scale up the use of CHX for cord care
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across districts nationwide. The aim of the program was for all newborns to receive a single

CHX gel application on the day of birth irrespective of place of birth. The CHX roll-out pro-

gram (i.e., our “treatment”) consisted of all the technical support needed for: the delivery of

CHX doses, the training of staff to apply and counsel patients on CHX application, and promo-

tion of CHX application — CHX cord care products were neither available nor promoted in a

district prior to the program roll-out.
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Figure 1: Neonatal mortality and CHX-NCP coverage
Notes: Authors calculations based on Nepal DHS 2016 microdata and JSI administrative
records of the district roll-out of CHX-NCP.

Implementation. The program was implemented by JSI Research & Training Institute, Inc

in partnership with the Nepalese Department of Health Services, international NGOs and a

Nepalese pharmaceutical company which produced the CHX gel locally. For home births, CHX

gel doses were distributed to pregnant women during antenatal contact — in general, during

antenatal care visits by female community health workers in the last two months of pregnancy

(Hodgins et al., 2019).4,5 The CHX training of health workers lasted between three hours and

4Eighty four percent of women who gave birth in the five years leading to the 2016 DHS received antenatal
care and 69 percent received four antenatal care visits or more (Ministry of Health [Nepal] and New ERA and
ICF, 2017).

5Appendix Table A.3, report results showing that CHX-NCP was not accompanied by an increase (or de-
crease) in the number of antenatal care visits.
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one day and to reduce costs and increase program sustainability, an effort was made to integrate

training and monitoring activities into broader maternal and newborn health programs, and

more specifically into the Community-Based Newborn Care Program (CB-NCP) (JSI Research

& Training Institute, 2017; JSI, 2017; Hodgins et al., 2019). In Section 4.2.2 we estimate

the effect of CHX in places where the CB-NCP and the other main neonatal health program

rolled out in the later part of our study period (CB-IMNCI) were not in place and reach similar

conclusions as in our main specification. We also test for complementarities between the three

programs and find none.

Compliance with CHX Application. Estimates of actual CHX application in program dis-

tricts vary much and, for home deliveries, an important limitation is that there is no record of

application and that maternal recall is unlikely to be reliable for non-salient events (Beckett

et al., 2001).6 Coverage estimates suggest that it may have peaked in 2014/2015, as estimates

range from 75 percent of home deliveries and 96 percent of facility deliveries (HIMS (2014),

as cited in Khanal (2015)) to 75 percent of all births according to Department of Health Ser-

vices (2015) to only about 40 percent of home births and 90 percent of facility births in 2017

according to Hodgins et al. (2019) so that our estimates of the effects of the program should

be interpreted as intention-to-treat effects of actual CHX application — arguably the parame-

ter of interest from a policy point of view. The coverage is however consistently estimated to

be higher among health facility deliveries, so that heterogeneity in treatment intensity cannot

account for the larger decrease in NMR observed among predicted home births.

Why Did the Program Extend to Hospital Births? The benefits of CHX cord care are likely

to be larger for home births as more hygienic practices should generally be expected in birthing

facilities than at home. There were, however, sufficient concerns about cord care to warrant

implementation of the CHX cord care program irrespective of place of delivery. This could

be due to the potential for infection to occur in hospital settings (e.g., due to insufficient hand

6In the DHS, women who gave birth within five years of the interview are asked, among many other things,
whether anything was placed on the stump after the umbilical cord was cut, and if so, what substance was applied.
There is good reason to think that answers to these questions are not reliable: While CHX was neither available nor
promoted in a district prior to the roll-out of CHX-NCP, as many as 30 percent report that CHX was applied to the
stump of the newborn in untreated district-by-time cells. Meanwhile only 45 percent report that CHX was applied
to the stump of the newborn in treated district-by-time cells, which is about half what is found in administrative
records.
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hygiene, Khanal and Thapa, 2017) and/or the possibility of infection after the newborn has left

the birthing facility.

Why Not Treat All Births Everywhere? While international estimates of the direct cost of

CHX application are low, the WHO’s recommendation of restricting the use of CHX can be

understood as balancing proven benefits against broader costs, in the same vein as its early

stance on face masks during the COVID-19 pandemic (WHO, 2020).7 Broader costs of CHX

cord care include the behavioral risk of unintentionally encouraging the application of other,

potentially dangerous substances, as well as the opportunity cost of diverting human, logistical,

and financial resources away from other essential medicines and tasks in an area where the gap

between recommended health care and practice is already large (Friberg et al., 2010; Requejo

et al., 2015).

2.3 Other Neonatal and Child Health Programs

Identification of Relevant Programs. Nepal has a long history of active programmatic efforts

to improve maternal and child health. To ensure that we capture the effect of chlorhexidine cord

care independently of any other intervention, a thorough identification of programs that may

have contributed to recent decreases in NMR was done by the Kathmandu-based Center for

Research on Environment, Health and Population Activities (CREHPA) in two steps. First,

all annual reports produced by the Department of Health since 2013 were analyzed in detail

to identify candidate explanations for the recent decrease in NMR. Second, semi-structured

interviews with 12 in-country neonatal and maternal health experts — from, among others,

the Family Welfare Division of the Department of Health Services, the WHO, UNICEF, and

Children and Maternity hospitals — were carried out in order to collect their specialist views

on the most likely reason(s) for the NMR reduction.

Relevant Programs and Implications for our Analysis. Eleven interventions were identi-

fied by key informants, including CHX-NCP. These are summarized in Appendix Table A.1.

Of these, three were being implemented in all districts prior to the roll-out of CHX cord care
7International estimates of the cost of implementing CHX range from US$0.23 for a single dose to US$2.9

when including all related fixed and variable costs (Hodgins et al., 2013; Federal Ministry of Health, 2016;
Callaghan-Koru et al., 2019). This is roughly similar to the cost of introducing a single vaccine in low-income
countries, which varies between $0.16 and $2.54 according to Vaughan et al. (2019).
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(CB-IMCI, Birth Preparedness Program and Safe Delivery Incentive Program), two were im-

plemented in all districts of Nepal at the same time so that any effect they may have on neonatal

mortality is captured by time fixed effects (Nyano Jhola and Aama and Newborn Care), and

one (Rural Ultrasound Program) affects only 190 births in our sample, of whom 108 are also

treated by the CHX cord care program (out of 3,255 treated observations). Three are nutrition

programs targeting pregnant women and children up to two years old (Nepal Agriculture and

Food Security Project, Sunaula and Suaahara) — therefore less likely to influence neonatal

mortality specifically. In robustness checks, we control for all these programs except the ones

whose implementation is subsumed in time fixed effects (see Appendix Figure B.1). The last

one is a comprehensive program targeting neonatal health (CB-NCP), which was subsequently

progressively integrated into CB-IMCI and rebranded “Community Based Integrated Manage-

ment of Newborn and Childhood Illness” (CB-IMNCI). We control for the implementation of

these two programs (CB-NCP and CB-IMNCI) throughout the main analysis, show that our re-

sults regarding CHX are robust to whether or not we control for these programs (or covariates

more generally), robust to restricting the analysis to observations outside areas implementing

either CB-NCP or CB-IMNCI, and show in Section 4.2.2 that there is no evidence of comple-

mentarities between CHX cord care and the presence of these programs in the district.

3 Data and Identification Strategy

3.1 Data

The 2016 Demographic and Health Survey (DHS) of Nepal is a nationally representative

survey that collected detailed pregnancy histories of all women age 15-49 found in sampled

households, as well as comprehensive data on the demographic and socioeconomic character-

istics of the household and its members (MoH, New ERA and ICF, 2017). The dataset includes,

for each child ever born to the interviewed women, dates (month and year) of birth and death,

if applicable. Detailed information on antenatal and postnatal care is also collected for births

occurring within 5 years of the interview, including place of delivery. In the absence of compre-

hensive vital statistics systems, the DHS is the main source of information on child mortality
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in Nepal as in many other developing countries.

The survey collected data on a total of 26,028 births. We drop 366 multiple births and

118 births to mothers who are either less than 15 or 45 and above because the risk of neonatal

mortality is much higher among these unusual births, and drop 116 births occurring within one

month of the interview date and thus not fully exposed to the risk of neonatal death. While

recall error is unlikely to be an issue for such a salient event in the life of a woman as the

death of a newborn, we restrict our main analytical sample to births that occurred within 25

years prior to the date of interview, resulting in a sample of 23,465 births. Robustness checks

varying this time window by 5 years on either side show that our findings are not sensitive to

this sample selection criteria (see Section 4).

We merge the DHS microdata with administrative data on the implementation of all the

main programs targeting maternal and newborn health in Nepal listed in Section 2.3. Dates

of the district-level implementation of each program were collected from various Department

of Health Annual Reports, controls included in the main analysis for the two health programs

targeting newborns specifically (CB-NCP and CB-IMNCI) and in robustness checks for sec-

ondary programs whose coverage is not fully captured by time fixed-effects. For CHX-NCP,

which was administered by JSI, we obtained roll-out dates from the CHX-NCP program direc-

tor.

The variable means for our sample (presented in Appendix Table A.2) highlight that the

sample at hand has very low levels of human development, with 57 percent of children having

mothers with no formal education, 41 percent living in rural areas, and one in five children

being born to a teenage mother. Forty-eight percent of children are female, which is close to

what would be expected given the widely observed natural sex ratio at birth (51 percent male).

3.2 Identification Strategy

Two-Way Fixed Effects Specification. In our main specification, we estimate linear proba-

bility models of the form:

midt = α+βCHXdt +D′d∆+T ′t Γ+X ′idtΛ+ εidt (1)
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where midt is an indicator equal to 1 if child i dies by age one month (allowing for “heaping” at

one month) and zero otherwise, CHXdt is an indicator equal to 1 if CHX-NCP was rolled out

in the child’s district by the date the child was born, Dd is a vector of district fixed effects, Tt

is a vector of time fixed effects, where time is defined at the month-by-year level (e.g., Ashwin

2066 in the Nepali calendar or October 2009, which we refer to as “month-year date of birth”

fixed effects or just “month of birth” fixed effects interchangeably), Xidt is a vector of controls

comprising all controls listed in panel A and B of Table A.2, covering child, mother, household

characteristics and district-time varying controls such as exposure to health programs other than

CHX-NCP; α,β,∆,Γ and Λ are parameters to be estimated; and εidt is an error term allowing

for arbitrary intra-district correlation.

As is standard in the extended difference-in-differences literature, we adopt a linear proba-

bility model. In robustness checks, we use a logit specification and come to similar conclusions

(See Appendix Table B.3).

Identification Assumption and Covariate Balance. Since we control for time- and district

fixed effects, identification relies on the absence of time-varying omitted factors correlated with

the timing of treatment. Regressing the treatment indicator on observable characteristics, we

find that, other than the expected positive correlation between CHX-NCP and CB-NCP, the

program on which CHX-NCP “piggy-backed” (Hodgins et al., 2019), the treatment is only

weakly correlated with observable characteristics.8 Treated newborns are significantly more

likely to have a mother with an ethnicity from the residual ”other” group, somewhat less likely

to be found in rural areas and somewhat more likely to have a mother with primary education.

However, these differences are small and there is no clear pattern of selection in terms of socio-

economic status (See Figure 2 and Appendix Table A.4). In Section 4, we report on a number

of robustness checks which indicate that our findings are unlikely to be biased by a correlation

between district trends in early life health and the timing of CHX-NCP roll out.

Recent work has shown that, in the presence of heterogeneous treatment effects, two-way

fixed effects models such as the one we estimate can significantly depart from the average

8In Section 4.2.2, we test for interaction effects between the CHX program and CB-NCP. We find no evidence
of complementarities and find that our results hold whether or not we include district-cells where CB-NCP is
present.
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Female                           
First born                       
Second born                      
Third born                       
Mother age 15-19y                
Mother age 20-24y                
Mother age 25-29y                
Mother age 30-34y                
Mother age 35-39y                
Ethnicity: hill chhetri          
Ethnicity: terai brahmin/chhetri 
Ethnicity: other terai caste     
Ethnicity: hill dalit            
Ethnicity: terai dalit           
Ethnicity: newar                 
Ethnicity: hill janajati         
Ethnicity: terai janajati        
Ethnicity: muslim                
Ethnicity: other                 
Rural                            
Education: no education          
Education: primary               
Education: secondary             
Wealth 0-20%                     
Wealth 20-40%                    
Wealth 40-60%                    
Wealth 60-80%                    
Altitude in 1st quintile         
Altitude in 2nd quintile         
Altitude in 3rd quintile         
Altitude in 4th quintile         
Program: CB-NCP                  
Program: CB-IMNCI                

-0.20 0.00 0.20 0.40 0.60
Coefficient

Figure 2: Covariate balance

Notes: Point estimates and 95% confidence intervals from estimating a regression with the treatment
indicator as the dependent variable and all of the covariates listed in the figure as independent variables,
as well as district and month-year date of birth fixed effects. The confidence intervals are calculated
based on standard errors clustered at the district level. Appendix Table A.4 reports all coefficients.

treatment effect (e.g., de Chaisemartin and d’Haultfoeuille, 2020; Goodman-Bacon, 2021). We

address this concern with several specification checks reported in Section 4.2.1.

4 Average Treatment Effect Results

4.1 Main Estimates

Table 1 reports our baseline estimates. In column (1) we show results from estimating a

specification without any controls and find that CHX-NCP significantly reduces neonatal mor-

tality by 1.4 percentage points. In column (2) we show the results when adding the full set of

controls. Using this specification, we find that, conditional on controls, CHX-NCP decreases
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neonatal mortality by 1.8 percentage points or 43 percent of the control mean. This is larger

than the 20-34% decreases observed in the three Southeast Asian RCTs, which suggests that

the additional preventive and remedial measures in place as part of the RCTs may have limited

the benefits of CHX application. In column (3) we restrict the sample to children born before

the treatment started in their district and include a placebo treatment which is equal to one if the

child was born 6 months before CHX-NCP was rolled out in the district or later, and zero oth-

erwise. As the table shows, the coefficient associated with this pre-treatment indicator is both

small in magnitude and not significantly different from zero. Adding controls to the placebo

specification does not alter the conclusions of no relationship between the lagged treatment

indicator and neonatal mortality, as shown in column (4).

Table 1: Effect of CHX-NCP on neonatal mortality

Dependent variable: mortality

month of death ∈ [0,1] month ∈ ]1,12] month ∈ [0,12]

(1) (2) (3) (4) (5) (6) (7)

CHX -0.014∗∗ -0.018∗∗∗ -0.020∗∗ 0.001 -0.019∗∗

(0.006) (0.006) (0.009) (0.004) (0.008)
CHXt−6 0.002 -0.001

(0.011) (0.011)
Observations 23,465 23,465 20,321 20,321 21,209 22,571 22,571
Clusters 73 73 73 73 73 73 73
MDV 0.042 0.042 0.042 0.042 0.045 0.015 0.058

Sample All All Pre Pre All All All
Controls No Yes No Yes Yes Yes Yes
Month of birth FE Yes Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes No Yes Yes
Mother FE No No No No Yes No No

Notes: All specifications are estimated as linear probability models using OLS. Except for the mother FE specifi-
cation, a “Yes” in the “Controls” row indicates that the regression also includes the full set of demographic, SES,
and program controls. Demographic controls include birth order (three indicators), five year maternal age group
indicators, and gender. SES controls include education (three indicators), wealth (four indicators), rural indicator,
altitude quintile indicators, and ethnicity indicators. Program controls include controls for the CB-NCP and CB-
IMNCI health programs. The mother FE specification excludes the SES controls as these are mother-invariant.
All coefficients are reported in Appendix Table A.5. The “Pre” sample excludes those for whom CHX is equal to
one. MDV is the mean of dependent variable among untreated individuals. Standard errors clustered at the district
level in parentheses. Asterisks indicate significance at the following levels: ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.

In Column (5) of Table 1, we include mother fixed-effects instead of district fixed effects

and find similar results. This indicates that our district fixed-effects estimates are not biased by

differential changes in the composition of mothers between treated and control districts (e.g.,

due to differential trends in maternal education or living standards between maternal cohorts).
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We also carry out a falsification test based on the fact that cord infection (omphalitis) pri-

marily affects neonates, but is uncommon among older infants (Painter and Feldman, 2019).

CHX application, which narrowly targets omphalitis, should therefore decrease neonatal mor-

tality but not mortality between 2 and 12 months of age — whereas unobserved time-varying

improvements in maternal and child health should decrease both. In Column (6) of Table 1,

we estimate Equation (1) using as dependent variable an indicator equal to 1 if the child died

between 2 and 12 months of age and zero if they survived beyond infancy — the 12 first months

of life — and find that babies born under the CHX-NCP program are no more or less likely to

die between 2 and 12 months (point estimate of 0.001). In the last column, we estimate the

total effect of CHX-NCP on overall mortality in the first year of life and find a statistically

significant decrease in infant mortality by 1.9 percentage points.9

4.2 Further Robustness Tests

4.2.1 Robustness of Two-Way Fixed Effects Estimates

Recent work has shown that, in the presence of heterogeneous treatment effects, two-way

fixed effects models such as the one we estimate can significantly depart from the average

treatment effect (e.g., de Chaisemartin and d’Haultfoeuille, 2020; Goodman-Bacon, 2021). Of

particular concern is the fact that some of the treatment effects averaged over in the two-way

fixed effects model can bear negative weights, which may lead to the sign of the treatment

effect estimate obtained in a two-way fixed effects model to be the reverse of that of the true

average treatment effect.

We address this issue with four further analyses. First, we evaluate the stability of our

estimates to restricting our sample to the district-month cells with non-negative weights —

where heterogeneity in treatment effects cannot lead to sign reversal. We compute the weights

derived in de Chaisemartin and d’Haultfoeuille (2020) and find 246 cells with negative weights

out of 1,623 (Columns (5) and (6) of Table 2). After dropping these cells, the estimated effect

9Given the small sample sizes we have in our data at the monthly level — the level at which treatment
is defined, an event-study analysis leads to very imprecise estimates. For completeness, we report the estimates
obtained from an event-study analysis at the quarterly level (Appendix Figure A.2), which show a noisy but largely
flat and non-negative pattern prior to the introduction of the CHX program in the district, and then increasingly
negative treatment effects after the program is rolled out.
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of CHX application is almost unchanged (from 0.0179 to -0.0185). In this new sample, the

weights change and 54 out of the 1377 remaining cells now have negative weights. After three

iterations of dropping cells with negative weights and re-estimating both our two-way fixed

effects model and the remaining cells weights, we obtain a sample with no negative weights

and the treatment effect on the remaining cells is -0.0184, compared to -0.0179 in the full

sample, illustrating that our results are not driven by the negative weighting of some treatment

effects.10 Second, we compute the minimum standard deviation in the treatment effect across

all district-month cells which would be required for the average ATT over all cells to in fact

be zero, and assess the likelihood of the treatment effect exhibiting this much variation.11 We

find that the required amount of heterogeneity for the true effect to be zero is implausible. The

minimum standard deviation required for a zero effect is between 0.0196 and 0.0283 (Table 2

Column (8)), whereas a random variable distributed between 0 and -0.0424 (the ATT needed

for the complete eradication of NMR in our sample) can at most have a standard deviation of

Table 2: Robustness of Two-Way Fixed Effects Estimates

Average Treatment Effect
All controls No controls

TWFE BJS TWFE BJS Nw Nw<0 ∑w<0 w σFE
(1) (2) (3) (4) (5) (6) (7) (8)

Baseline -0.018∗∗∗ -0.015 -0.014∗∗ -0.010∗∗∗ 1623 246 -0.043 0.020
(0.006) ( 0.006) ( 0.004)

Iteration 1 -0.018∗∗∗ -0.018 -0.014∗∗ -0.013∗∗∗ 1377 54 -0.005 0.026
(0.006) ( 0.006) ( 0.004)

Iteration 2 -0.018∗∗∗ -0.019 -0.014∗∗ -0.014∗∗∗ 1323 5 -0.000 0.028
(0.006) ( 0.006) ( 0.004)

Iteration 3 -0.018∗∗∗ -0.019 -0.014∗∗ -0.014∗∗∗ 1318 0 0.000 NA
(0.006) ( 0.006) ( 0.004)

Notes: TWFE is the Two-Way Fixed Estimator and BJS is the estimator by Borusyak et al. (2021) implemented in
Stata with the did imputation command. Columns (5) to (8) pertain to TWFE estimates. Nw indicates the number
of cells, Nw<0 indicates the number of cells with negative weight, ∑w<0 w indicates the sum of the negative weights,
and σFE is the minimum standard deviation in the treatment effect across all district-month cells which would be
required for the average ATT over all cells to in fact be zero. Except for the BJS estimator with controls, for which
standard errors could not be obtained due to convergence issues, asterisks indicate significance at the following
levels ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.

10Dropping cells with negative weights results in disproportionately dropping later time periods since these are
more likely to carry negative weights. It is therefore related to what is proposed in Jakiela (2021).

11We compute both the weights and the minimum standard deviation using de Chaisemartin and
d’Haultfoeuille (2020)’s two-wayfeweights command.
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√
1
4(0.0424)2 = 0.0212 (Popoviciu, 1935), which only occurs in the extreme case where half

of the distribution is concentrated at 0 (no effect) and the other half at -0.042 (total eradication

of NMR). If the absolute values of the ATTs for our 1,623 cells were drawn from a uniform

distribution between 0 and -0.042, for instance, the standard deviation (SD) would only be

0.012.12 Third, we report average treatment effects on the treated across all treated observations

using the estimator proposed by Borusyak et al. (2021) (columns (2) and (4)) and confirm that

our estimates are robust to allowing for dynamic heterogeneous treatment effects.13 Finally, in

Section 5.2 we provide estimates of the ATT using a causal forest approach instead of a linear

two-way fixed effects regression and find very consistent estimates.

4.2.2 Other Programs

When a two-way fixed effects regression includes more than one variable with heteroge-

neous effects, the estimated average effect of each of these variables may be contaminated

by that of the other(s) (de Chaisemartin and D’Haultfoeuille, 2022). A test of parallel pre-

treatment trends however suggests that control variables other than time- and district- fixed

effects are not required for the parallel trends assumption to hold (column (3) of Table 1) and

we find a similar CHX effect whether control variables are included or not (columns (1) and

(2) of Table 1).

We also explore in detail the potential interaction between CHX and the broader healthcare

programs concerned with neonatal mortality summarized in Table A.1. First, we inspect vi-

sually the changes in neonatal mortality over time against the roll-out of both CHX care and

these broader programs (CB-NCP and CB-IMNCI, in which CB-NCP was later integrated). As

shown in Appendix Figure A.3, there is no decrease in neonatal mortality between 2009 and

2011, even though the coverage of CB-NCP goes from 8% to 49% during this period. Af-

ter that, while CB-NCP’s coverage only increases by 14 percentage points between 2011 and

2016, neonatal mortality decreases steadily as CHX coverage goes from 20% to 92% coverage.

12If they were drawn instead from a normal distribution with mean 0.018 (our baseline two-way fixed-effects
estimate) and SD 0.0196 — the minimum SD required for the average ATT over all cells to be zero in this
specification, 29 percent of ATTs would have to be outside the [-0.0424,0] range, which is not plausible.

13We are constrained by which estimator we can use in our set-up where each district-month cell only has few
observations. This rules out estimators which, contrary to Borusyak et al. (2021) only use the last pre-treatment
period.
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CHX coverage increases linearly throughout its expansion, matched by a near-linear decrease

in neonatal mortality. The very rapid scale-up of CB-IMNCI between 2013 and 2016 is not

accompanied by an acceleration of the decrease in neonatal mortality. Second, we estimate

the effect of CHX while allowing two-way interactions with CB-NCP and CB-IMNCI and a

three-way interaction between all three (assuming temporarily that parallel trends also hold for

the roll-outs of CB-NCB and CB-IMNCI). Results reported in Table A.9 show no sign of com-

plementarities between CHX and the other programs, suggesting that our main specification is

not capturing the combined effect of chlorhexidine cord care and wider neonatal care. For com-

pleteness, we also estimate the effect of CHX in the sample of births where neither CB-NCP

nor CB-IMNCI are present (column (7)) and the effect of CB-NCP where neither CHX nor

CB-IMNCI are present (column (8)) and confirm that CHX is effective in decreasing neona-

tal mortality independently of the presence of the other programs, while we find no evidence

that CB-NCP has any independent effect — consistent with Paudel et al. (2017)’s findings that

CB-NCP did not lead to significant improvements in newborn care practices.

4.2.3 Further Specification Checks

In Appendix Section B, we report on further robustness tests including using alternative

samples and covariates, not allowing for age of death heaping at one month old, using survey

weights and using a logit- instead of a linear probability model.14 Our conclusions are robust

across these alternative specifications.

In the next section, we go beyond average effects estimated across the whole sample to

investigate the heterogeneity of the benefits of CHX and what it implies for optimal policy

targeting.

14As noted in Arulampalam et al. (2017), the estimated effect of the program may be biased if the program
itself changed the accuracy of the reporting of neonatal mortality. There is however no reason to think that the
CHX program would change reporting behavior — in particular, there is no evidence that it affected the probability
of institutional delivery (Table A.3)).
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5 Treatment Effect Heterogeneity and Lessons for Policy

Targeting

Having established significant average beneficial effects of CHX-NCP at scale, we now

turn to the question of treatment effect heterogeneity. In line with findings from meta-analysis

of the five existing trials (e.g. Imdad et al., 2013), between 2013 and 2022 WHO guidelines

only recommended CHX cord care for home deliveries in areas with rates of neonatal mortality

above 3 percent15. Assessing treatment effect heterogeneity by place of delivery is therefore a

useful first step to shed light on the desirability of this recommendation outside experimental

settings. We then go beyond assessing the degree of treatment effect heterogeneity by place of

delivery using a data-driven approach based on recent developments in the machine learning

literature and compare our findings with factors associated with neonatal deaths caused by

sepsis across six districts of Nepal studied in 2012/13 (Erchick et al., 2022).

5.1 Heterogeneity Using the Two-Way Fixed Effects Approach

Place of delivery is only collected by the DHS for recent births (i.e., within five years of the

survey). To use data covering a longer period of tim and thus increase statistical power, we pre-

dict whether a child was delivered at home using a linear probability model. The covariates in-

cluded and estimated coefficients are reported in Appendix Table A.6. In the sample for which

we know the place of delivery, when predicting a home birth based on a probability of home

delivery above 0.5, we predict place of birth correctly in 76 percent of cases (see Appendix

Figure A.4). To account for the uncertainty in classifying births based on their predicted- rather

than observed place of delivery, we obtain bootstrapped standard errors clustered at the district

level.16

In Column (1) of Table 3 we repeat our baseline findings for ease of reference. In Column

(2) we allow the effect of CHX to vary by predicted place of birth by including a control

for predicted place of birth (1[P(home birth)>0.5]) and an interaction between predicted home
15Since 2022, the WHO recommends CHX cord care only in regions where the application of harmful sub-

stances such as mustard oil, turmeric or animal dung to the stump is common (WHO, 2022)
16Namely, we draw 200 random samples from the original dataset, and, for each random sample, predict

whether the child is delivered at home or not and then re-estimate the relevant variant of Equation (1).
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birth and the CHX treatment variable. In this specification, the treatment effect is not significant

for predicted facility deliveries but it is four times larger (2.8 percentage point) and statistically

significant among predicted home deliveries. Finally, in Columns (3) and (4) we allow all the

model coefficients to vary by predicted place of birth, which leads to a near-zero estimated

effect of CHX among predicted facility deliveries (0.1 percentage point) while the estimated

decrease in the probability of neonatal mortality among predicted home deliveries remains

equal to 2.8 percentage points — and we can reject the null of no difference in treatment

effect between the two samples defined by predicted place of delivery (p-value: 0.031). Tests

supporting the common trends assumption within subsample and a robustness test using an

alternative prediction sample are reported in the appendix.17,18

Our results show clear evidence of beneficial effects of CHX-NCP on children predicted

to being born at home, and no evidence of such benefits, on average, among other births.

Heterogeneous effects between predicted place of delivery may come from different rates of

compliance or different efficacy conditional on compliance, for which place of delivery acts as

proxy. Here we estimate intention-to-treat effects, which are of interest to policy makers when

compliance cannot be enforced, as is the case for home births. As discussed in Section 2.2,

compliance estimates vary but are close to 100% in the case of facility births, where treatment

effect estimates are smallest, thus suggesting that different compliance rates are not a key driver

of heterogeneity.

17To assess whether the identifying common trend assumption also holds in the sub-samples, we present sub-
sample results for the specification of column (4) in Table 1 in Appendix Table A.7. The point estimates on the
pre-treatment indicator are small and statistically indistinguishable from zero in both sub-samples.

18In Appendix Table A.8, we repeat this heterogeneity analysis using a different prediction sample (see Ap-
pendix Table A.6 for prediction model estimates). Instead of using only the 2011-2016 recent births subsample of
the 2016 DHS, for which we observe place of birth, in this sensitivity check we stack the recent births subsamples
for which we observe place of birth for five DHS: 1996, 2001, 2006, 2011 and 2016 and use the parameters of this
model to split our DHS 2016 main sample by predicted home or facility birth. We similarly conclude that CHX
is, on average, only beneficial for predicted home births and that the average effect among those is large, but with
a more marked contrast in treatment effects between the home- vs. facility birth samples.
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Table 3: Heterogeneity by place of delivery

Sample:
All All

P(home birth)
<0.5 >0.5

(1) (2) (3) (4)

CHX -0.018∗∗ -0.007 0.001 -0.028∗∗

(0.007) (0.007) (0.009) (0.011)
1[P(home birth)>0.5] -0.001

(0.005)
CHX × 1[P(home birth)>0.5] -0.021∗∗∗

(0.008)
CHX + CHX × 1[P(home birth)>0.5] -0.028∗∗∗

(0.008)
Observations 23465 23465 10,860 12,605
Clusters 73 73 73 73
Control mean of dep. var 0.042 0.042 0.033 0.050
P-val (dif across sample) 0.031

Notes: All specifications are estimated as linear probability models using OLS with the full set of demo-
graphic, SES, and program controls. Demographic controls include birth order (three indicators), five year
maternal age group indicators, and gender. SES controls include education (three indicators), wealth (four
indicators), rural indicator, altitude quintile indicators, and ethnicity indicators. Program controls include
controls for the CB-NCP and CB-IMNCI health programs. All specifications are estimated with district and
month-year date of birth fixed effects. We split the sample according to the predicted place of delivery, based
on the linear probability model shown in Column (2) of Appendix Table A.6. Bootstrapped standard errors
based on 200 iterations and clustered at the district level in parentheses. Asterisks indicate significance at
the following levels: ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.

5.2 Heterogeneity with Causal Forests

Place of delivery is likely to proxy for risk factors such as hygiene conditions including ap-

plication of harmful substances to the stump, healthcare at- and shortly after birth and health en-

dowment at birth (rather than differences in compliance, as discussed at the end of the previous

subsection). To better understand the treatment effect heterogeneity we observe and therefore

potentially improve on current WHO recommendations for targeting, we also consider hetero-

geneity along other dimensions. Given the absence of a pre-analysis plan, we use a data-driven

approach to study the heterogeneity by means of a causal forest (Athey and Imbens, 2016; Tib-

shirani et al., 2021). The causal forest gives us estimates of the individual Conditional Average

Treatment Effect (CATE) — i.e., the ATE for observations with a given set of individual- or

district characteristics, which allows us to identify and describe who benefits the most and the

least from the treatment.
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5.2.1 Conditional Average Treatment Effects Based on Causal Forests

Overview. We first use regression forests to “residualize” the treatment indicator and our

outcome of interest (neonatal mortality) — i.e., to purge them of variation coming from, in

our case, district- and month×year of birth as captured by fixed effects, and availability of

the two main neonatal health programs. Using these residuals as outcomes, we then estimate a

causal forest on potential outcome predictors or “features”. In addition to the individual sample

characteristics included as covariates in our two-way fixed effects regressions, we also consider

a rich set of district-level features measured in the five years prior to the survey (see notes under

Figure 4 for the full list).

Building the Causal Forest. The building blocks of the causal forest are its trees. Each tree

is created by partitioning a 50% draw of the sample into leaves defined by the value taken by

a subset of features. The partitioning algorithm finds the combination of values taken by these

features which maximizes treatment heterogeneity across leaves and penalizes treatment effect

variance within leaves (Athey and Imbens, 2016). Following best practice, the fine-tuning of

the algorithm is done optimally without researcher input based on cross-validation.19

Diagnostic Tests. Before reporting on the heterogeneity patterns uncovered by this exercise,

we report results of diagnostic tests which indicate that the causal forest successfully captures

both average and heterogeneous treatment effects. More specifically, in panel A of Table 4

we show results of Chernozhukov et al. (2020)’s omnibus test for heterogeneity modified to

be applied in an observational setting following the procedure implemented in Tibshirani et al.

(2021). Intuitively we are estimating a linear regression of the individual’s treatment effect

predicted by the forest on the average predicted treatment effect (Mean Forest Prediction) and

the individual’s predicted deviation from the average treatment effect (Differential Forest Pre-

diction). If the forest captures the average treatment effect well and if there is treatment effect

heterogeneity that is also captured by the causal forest, both coefficients should be 1. In our

19We estimate the causal forest using the gr f package in R (Tibshirani et al., 2021) with 2000 trees and all
other parameter settings selected based on cross-validation. We use 50% of the sample to grow each tree. The
splitting structure of the trees is determined on a 50% sub-sample of the tree sub-sample, after which the tree
is populated by the the other 50% to estimate the treatment effects. For the splits in the trees we consider 30
variables and we restrict the nodes to have at least 5 observations. Appendix C provides further details about the
causal forest procedure.
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case both coefficients are close to 1 (and 1 is included in the confidence interval).

Table 4: Causal forest fit & doubly robust average treatment effects

A. Omnibus diagnostic test for forest fit
Mean Forest Prediction 1.123∗∗∗

(0.255)
Differential Forest Prediction 0.677∗

(0.479)

B. Doubly Robust Average Treatment Effects
Full sample -0.019∗∗∗

(0.003)
Predicted facility births -0.007∗∗

(0.004)
Predicted home births -0.030∗∗∗

(0.004)
Notes: Panel A shows the results for the omnibus test inspired by equation 3.1
in Chernozhukov et al. (2020) modified to the observational setting and imple-
mented through the test calibration function from the grf library in R. Panel
B shows the Augmented Inverse-Propensity Weighted (AIPW) Average Treat-
ment Effects. Standard errors in parentheses. Asterisks indicate significance at
the following levels ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01. Note that, following
Athey et al. (2019), the significance levels in panel A. are for the one-sided tests.

Doubly-Robust Average Treatment Effects. Panel B of Table 4 shows the Augmented

Inverse-Propensity Weighted (AIPW) Average Treatment Effects based on the causal forest.

The AIPW is doubly robust, meaning that it is a consistent estimator of the ATE as long as at

least one of (i) the propensity score or (ii) the outcome model, is correctly specified. Reas-

suringly, our AIPW estimates are similar to our two-way fixed fixed effects specification (full

sample: -1.9 percentage points compared to -1.8 percentage points in Table 1, predicted home

deliveries: -3 percentage points compared to -2.8 percentage points in Table 3), even though

for predicted facility births, the AIPW is suggestive of CHX being somewhat effective (-0.7

percentage points, significant at 5% compared to an insignificant 0.1 percentage points in Table

3).

5.2.2 Conditional Average Treatment Effects Heterogeneity

Overview. We now describe the rich pattern of heterogeneity in Conditional Average Treat-

ment Effects (CATEs). In doing so, we show which variables are most strongly associated

with CHX impact — showing, in particular, that the three variables used in WHO guidelines
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are good predictors, but not the strongest predictors — and that there is much heterogeneity in

treatment effects within groups defined by place of birth.

Heterogeneity Between- and Within Place of Birth. Figure 3 shows the distribution of indi-

vidual CATEs for, respectively: the full sample, the sample of predicted home births, and the

sample of predicted facility births. We observe that a large fraction of the sample is estimated to

benefit from the treatment. However, the CHX programme is predicted to have a small or even

harmful effect for a non-negligible part of the distribution. Indeed, as with most public health

interventions, there are potential adverse consequences of CHX cord care. These include the

risk of encouraging the application of other, potentially harmful substances by departing from

the standard message of keeping the stump dry and clean, as well as the risk of diverting hu-

man, logistical, and financial resources away from other essential medicines and tasks in an

area where the gap between recommended health care and practice is already large (Requejo

et al., 2015). As expected, the distribution is shifted to the left for births that we predict to

take place at home. Among those, very few are expected to have small or harmful treatment

effects. However, we also note that a large share of children predicted to be born at a facility

are estimated to benefit from the treatment.20

In sum, targeting treatment by place of delivery appears at first glance to be convenient and

likely effective in avoiding adverse consequences. But the results from the causal forest show

that there is substantial overlap in the home- and facility births treatment effects distributions

and hence that this targeting approach is a blunt policy tool which may be improved upon.

Individual- and District Predictors of Treatment Effects. We now turn to a broader char-

acterization of the treatment effect heterogeneity. In Table 5 we compare means for selected

variables across the first and third tertiles. As expected from the distributions reported above,

in the first tertile, where we observe large benefits of the treatment, 76 percent of births are

predicted to take place at home compared to only 25 percent in the third tertile. Moreover, chil-

dren in the first tertile are more often boys (unsurprisingly given that male newborns are more

likely to die), and are often born to very young, less educated, rural mothers and in districts

with higher NMR. They are also more often found in districts where the application of harmful

20Appendix Figure A.6 shows the distribution of treatment effects across each sub-sample by reporting ATEs
for each tertile of the overall- and birth place samples.
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Figure 3: Distribution of CATEs by place of delivery
Notes: The distributions are estimated using bandwidth selected based on Silverman’s ‘rule of thumb’
(Silverman, 1986) and a gaussian kernel.

substances to the umbilical stump is more common, although the difference between tertiles

(36% prevalence harmful substance application in the first tertile vs. 24% in the third tertile) is

less pronounced than for other covariates — suggesting that targeting treatment based on this

variable, as per the latest WHO guidelines, may not be optimal.

Contribution of Variables Used in WHO Guidelines to Heterogeneity. The treatment effect

heterogeneity uncovered by the causal forest goes beyond well-known predictors of CHX ef-

fectiveness. For instance, being predicted to be born at home explains 19% of the variation in

the predicted conditional average treatment effects (CATE), the district prevalence of harmful

substance application explains 9% of the CATE variation, and district NMR explains 5% of

the CATE variation whereas maternal education, for instance, explains 35% of the variation in

CATE (see Appendix Figure A.5).

5.3 Lessons for Policy Targeting

We now ask what the optimal targeting policy is according to the heterogeneous doubly-

robust treatment effects we estimate in the data and taking into account the uncertainty sur-
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Table 5: Covariate means across tertiles of CATEs

Tertile
First Third Difference P-val

AIPW -0.033 -0.004 0.029 <0.001
CATE -0.033 -0.001 0.032 <0.001
Control Neonatal Mortality 0.057 0.024 -0.033 <0.001
Female 0.408 0.528 0.120 <0.001
Predicted home delivery 0.759 0.254 -0.506 <0.001
Age: 15-19y 0.278 0.130 -0.148 <0.001
Age: 20-24y 0.388 0.461 0.073 <0.001
Age: 25-29y 0.212 0.288 0.076 <0.001
Age: 30-34y 0.091 0.096 0.005 0.321
Age: 35-39y 0.026 0.022 -0.004 0.131
Age: 40-45y 0.005 0.003 -0.003 0.006
Education: No education 0.857 0.211 -0.647 <0.001
Education: Primary 0.101 0.202 0.101 <0.001
Education: Secondary 0.038 0.438 0.400 <0.001
Education: Higher 0.004 0.150 0.146 <0.001
Rural 0.536 0.277 -0.259 <0.001
District: harmful substance use 0.361 0.240 -0.121 <0.001

Notes: The table shows covariate means for the first and third tertile
of the sample based on the estimated CATEs.

rounding these estimates.

Optimal Policy Definition and Method. Following the approach proposed by Athey and Wa-

ger (2021), we use the estimates of individual treatment effects from the causal forest (doubly-

robust scores) to find the optimal policy, allowing this policy to use a wide range of antenatal-,

delivery-, and postnatal care variables. A policy consists of a treatment allocation rule based

on covariates and the optimal policy is the allocation rule that leads to the difference in the

expected utility from this policy and the maximum expected utility which could be achieved

being asymptotically “small” (for a given policy class Π and population).21 We derive our op-

timal policies using the policy learning algorithm developed by Athey and Wager (2021) (and

implemented in R with the policytree function due to Sverdrup et al., 2020). In particular, we

split the sample into ten equally-sized folds and, for each fold, find the optimal policy using

data from the other k-1 folds and then apply this optimal policy to the left-out kth fold.

21Where asymptotically “small” means “bounded on the order of
√

VC(Π)/n with high probability”, where
VC(Π) is the Vapnik-Chervonenkis dimension of class Π and n is the number of observations (Athey and Wager,
2021, p.135).

26



Variables Used for Targeting. We study policies obtained with three different sets of co-

variates. For the first policy, we allow the algorithm to select optimally who should be treated

based on the full set of individual- and district-level variables. For the second policy, we only

allow targeting based on district-level variables. Individual-level variables are likely to be of

less practical use for policy targeting, but reporting estimates which also use these individual

variables shows that targeting only by district-level variables does nearly as well. For the third

policy, we allow targeting based on all district variables except the district prevalence of harm-

ful substance application. Comparing the second- and third policies sheds light on the relevance

of the prevalence of harmful substance application specifically, which is the focus of the latest

WHO targeting recommendations (issued in 2022).

5.3.1 Comparing Optimal Policies with WHO Recommendations

Optimal Targeting Variables. To fix ideas, in Figure 4, we show the optimal policies ob-

tained using all the district-level variables (but no individual characteristics) for the first and

tenth folds. As illustrated in Figure 4, the resulting optimal assignment varies across folds.22

If only district-level variables are used for targeting, variables which capture the quantity and

quality of antenatal care are the most commonly selected along with the share of newborns

born in public facilities — interestingly, much more commonly than the share predicted to be-

ing born at home, the district prevalence of harmful substance application, or baseline neonatal

mortality rates. The fact that the optimal targeting policies mostly select variables related to the

quality and quantity of antenatal care is consistent with risk factors for neonatal death caused by

sepsis identified using data from verbal autopsies carried out in 6 districts of Nepal in 2012/13.

Erchick et al. (2022) indeed find that having fewer than four antenatal care visits is correlated

with death by sepsis relative to birth asphyxia in multivariate regressions (while home delivery

is not significantly more or less common for any specific cause of neonatal death).

Comparing NMR Reductions with WHO vs. Optimal Targeting. We now turn to predicting

the effect on NMR of targeting different newborns in our sample. Each targeting policy se-

lects different observations to be treated based on their characteristics. To obtain the Average

22In Appendix Table A.10 we report the number of times each covariate is selected in an optimal policy.
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District: delivery at public facility ≤ 0.42

District: delivery at
public facility ≤ 0.38

Treat Do not treat

District: breastfeeding
within 1h ≤0.68

Do not treat Treat

True
(0.48)

True
(0.42)

False
(0.06)

False
(0.52)

True
(0.08)

False
(0.44)

(a) Fold 1

District: iron rate ≤ 0.90

District: prenatal
doc/nurse rate ≤ 0.88

Treat Do not treat

District: antenatal visits
≤4.66

Treat Do not treat

True
(0.30)

True
(0.25)

False
(0.05)

False
(0.70)

True
(0.54)

False
(0.16)

(b) Fold 10

Figure 4: Examples of optimal policies

Notes: Figure 4a shows the optimal policy obtained for the first fold of the data based on all district level variables:
antenatal visits (timing and number), whether received/bought iron tablets during pregnancy, tetanus protection
during pregnancy, place of delivery, postnatal visits, immunization rate, neonatal mortality rate, nurse/doctor
delivery support, small baby, application of potentially harmful substance. Figure 4b shows the optimal policy
obtained for the tenth fold of the data based on the same district level variables. Population shares are shown in
parentheses.

Treatment Effects on the Treated (Untreated), we apply to each treated (untreated) observation

the doubly-robust estimate or “AIPW” corresponding to their characteristics.23 In Table 6 we

compare the optimal policies obtained with each set of covariates to the 2013-2022 WHO rec-

ommendation of treating only — here, predicted — home births in districts with NMR above

3 percentage points. We also compare to this policy the revised recommendation issued in

2022 of treating only newborns in contexts where the application of harmful substances to the

umbilical stump is “common”. In the absence of a published threshold for this practice to be

considered common, we use as threshold the centile of the distribution allowing us to com-

pare the predicted effect on NMR of treating roughly the same proportion of newborns with

the WHO 2013-2022 and WHO 2022 WHO policies. Without imposing any constraint on the

share of treated newborns, the data-driven optimal policies treat between 81 and 83 percent of

the sample compared to only 32 percent of the sample for the WHO 2013-2022 policy (and,

by construction, also our operationalization of the WHO 2022 policy). As a result, the optimal

policies would reduce the neonatal mortality rate by more than the WHO policies (namely, by

1.9 compared to 1.1 percentage points). Interestingly, the benefit of using both district- and

23Hence assuming that the rate of compliance is, across all targeting policies, the same as in the actual CHX
program we evaluate in the preceding sections.
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individual-specific variables to design the optimal policy is negligible, compared to only using

district-level variables which are more readily available to policy-makers.

5.3.2 Comparing Further Policies with WHO Recommendations

In this subsection, we consider two further targeting approaches. First, we consider a sim-

ple, practical targeting approach inspired by the optimal policies. Second, we restrict the share

of births to be treated to be similar to the share treated under the WHO recommendations, and

find the optimal targeting policy holding this share constant.

Simple Targeting Approach Inspired by the Optimal Policies. Optimal policies vary across

folds so we also study the effect of applying a single targeting rule using the two variables most

commonly selected by the unconstrained optimal policies and their (rounded) cut-off values.

Namely, we study the effect of applying a simple targeting rule based on the district average

number of antenatal care visits being below 4.6 and the district share of deliveries occurring in

public facilities being below 40%. Applying this simple targeting rule results in treating 79%

of newborns and would be predicted to achieve a similar reduction in NMR to that based on the

more complex sets of optimal policies.24

Optimal Targeting of a Limited Share of Newborns. Our — so far — unconstrained policies,

which treat a much larger share of the population than the ones recommended by the WHO, are

predicted to nearly double the mortality reduction but would however also be more expensive

than the WHO recommended ones. When we constrain treatment to target no more than the

number of treated individuals with the WHO policy, the benefits are considerably lower than

with the unconstrained policies and statistically indistinguishable from the WHO 2013-2022

policy (Panel C of Table 6).

5.3.3 Conclusions for Policy Targeting

Taken together, our results show that the WHO guidelines do an excellent job at targeting a

third or so of newborns who would stand to benefit as much as any other from CHX, but also

exclude many newborns whose chance of survival would be much improved by CHX cord care.

24An even simpler rule treating newborns if the district average number of antenatal care visits is below 4.6
would only result in a marginally smaller share treated and overall NMR reduction.
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Table 6: Reduced mortality and share treated under alternative targeting policies

ATT ATU %treated ∆NMR ∆NMR-∆NMRWHO

A. Pre-defined policies
WHO 2013-2022 -0.036∗∗∗ -0.012∗∗∗ 32.3 -0.011∗∗∗

(0.004) (0.003) (0.001)

WHO 2022 -0.034∗∗∗ -0.012∗∗∗ 31.8 -0.011∗∗∗ 0.000
(0.003) (0.004) (0.001) (0.001)

District average antenatal visits ≤ 4.6 -0.024∗∗∗ -0.001 79.2 -0.019∗∗∗ -0.008∗∗∗

or District share delivered in public fac. <0.4 (0.003) (0.004) (0.002) (0.002)

B. Unconstrained optimal policies
Individual & district variables -0.023∗∗∗ -0.003 81.3 -0.019∗∗∗ -0.007∗∗∗

(0.003) (0.004) (0.002) (0.002)
District variables only -0.023∗∗∗ -0.004 83.2 -0.019∗∗∗ -0.007∗∗∗

(0.003) (0.003) (0.002) (0.002)

District variables only (excl. harmful subst) -0.023∗∗∗ -0.003 83.4 -0.019∗∗∗ -0.007∗∗∗

(0.003) (0.003) (0.002) (0.002)

C. Constrained optimal policies
Individual & district variables -0.041∗∗∗ -0.010∗∗∗ 29.6 -0.012∗∗∗ -0.001

(0.004) (0.003) (0.001) (0.001)
District variables only -0.039∗∗∗ -0.011∗∗∗ 28.5 -0.011∗∗∗ 0.000

(0.005) (0.002) (0.001) (0.001)

District variables only (excl. harmful subst) -0.041∗∗∗ -0.011∗∗∗ 28.7 -0.012∗∗∗ -0.000
(0.005) (0.002) (0.003) (0.001)

Notes: Rows labeled “Individual & district variables” show the reduction in NMR using the optimal policy based on all variables used in the causal
forest (except gender, district fixed effects, and month times year fixed effects) and district level variables: antenatal visits (timing and number), iron
treatments, tetanus protection, place of delivery, postnatal visits, immunization rate, neonatal mortality rate, nurse/doc delivery support, small baby,
share whose mothers self-reports applying a potentially harmful substance to the cord stump. Rows labeled “District variables only [(excl. harmful
subst)]” show the reduction in NMR using the optimal policy based on all district level variables, except for the prevalence of harmful substance
application if so indicated. “Constrained” optimal policies are obtained by adding a cost to the treatment until the proportion of treated individuals
is below that treated under WHO 2013-2022 policy. The last column reports differences between the estimated change in NMR relative to WHO
2013-2022 policy. WHO 2013-2022 policy: treat children born at home in settings (here, districts) with NMR above 3 ppt. WHO 2022 policy: treat
children in settings where the application of harmful substances is common. ATT (ATU) reports the AIPW for all individuals (not) treated with this
policy. Standard errors in parenthesis. Asterisks indicate significance at the following levels ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.

Our optimal targeting exercise, which is based on a utilitarian criterion, indicate that it would

be optimal under this criterion to treat many more newborns. This finding should however be

understood with the caveat that a targeting that is optimal according to one welfare criterion

may not be optimal according to a different one. Applying a welfare criterion which would put

a much lower weight on the risk of not treating an individual who might benefit from treatment

than on the risk of treating an individual who might be worse-off if treated may favor a policy

rule closer to the WHO’s — since, as is clear from Figure 3, part of the sample is predicted to

have near-zero or even adverse treatment effects.25

In the next section, we extrapolate our heterogeneity analysis to other DHS samples in- and

25See also Kowalski (2019), where finite-sample bounds are derived to infer quantities such as the number of
individuals who would die if treated with a new drug based on data from a randomized trial.
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outside Nepal to assess the soundness of our findings and their informativeness beyond Nepal.

6 Extrapolating the Effect of Nepal’s CHX Roll-Out Pro-

gram across RCT Study Locations

The results of the causal forest suggest that there is substantial heterogeneity in the treat-

ment effect of the Nepalese CHX national program (CHX-NCP), which echoes the fact that

CHX trials were very successful in reducing NMR in three cases, but had no significant effect

in two other ones.

Objective of the Extrapolation. As discussed in the introduction, the treatment is not fully

comparable between the RCTs and the Nepalese national roll-out because of differences such

as the number of doses and who applied CHX, compliance with actual CHX application, as well

as, crucially, because RCT subjects in both control- and treatment groups received additional

preventive and remedial health care, which also varied across RCT settings. This additional

health care can explain the lower-than-expected mortality rates observed in the trials’ control

groups and may have contributed to smaller treatment effects. The predicted effect of applying

a CHX-NCP-like treatment to samples drawn from the regions where the RCTs took place

should therefore not match the actual RCT treatment effects even if we could perfectly predict

the effect of implementing CHX-NCP in these regions and the RCT samples and our DHS

samples were equally representative of these regions. The aim of our exercise is therefore to

see the extent to which, despite these limitations, the picture of heterogeneity we uncover in

the observational Nepalese dataset matches the general pattern of experimental findings.

Extrapolation Method. We follow the doubly-robust extrapolation approach due to Da-

habreh et al. (2020) as implemented in Tibshirani et al. (2022). More specifically, we construct

samples for each of the five subnational regions and time periods in which the RCTs were im-

plemented based on the relevant national DHS surveys.26 We then train a simplified causal

forest in our nationally representative Nepalese dataset based on the restricted set of variables

that we are able to observe in all five samples to predict the Conditional Average Treatment
26Namely, MoH, New ERA and ICF (2017); NIPORT, Mitra and Associates and ICF (2013); NIPS and ICF

(2013); MoH, MoHCDGEC, NBS, OCGS and ICF (2016); CSO, MoH and ICF (2014).
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Effects (CATEs) and the corresponding doubly-robust treatment effects (AIPWs) for each RCT

setting.27

Comparison of Extrapolated Average Effects of CHX-NCP with RCT Findings. Table Ap-

pendix A.11 first shows the control group NMR rates reported in the RCT studies. Unsurpris-

ingly given the additional health care provided as part of these RCTs, these NMR rates are

between 0.5 and 3.2 percentage points smaller than those observed in the DHS samples (re-

ported in Panel B), which holding all else equal should lead to smaller treatment effects. We

then report the average estimated doubly-robust treatment effects (AIPWs) of implementing

the Nepalese CHX roll-out program across the five samples. As expected, we predict larger

decreases in neonatal mortality from extrapolating the effect of the national roll-out than those

found in the trials. But we predict large, statistically significant average treatment effects in the

three samples corresponding to areas where RCTs found that CHX trials significantly reduced

neonatal mortality whereas, for the two samples corresponding to the regions where the RCTs

show no significant effects of CHX cord care interventions, the predicted average treatment

effects of a hypothetical national roll-out are smaller and statistically insignificant.

Heterogeneity Between- and Within RCT Locations. In the rest of Table A.11, we report the

average predicted CATEs which enter the computation of the doubly robust treatment effects,

and characteristics of the different samples used in the forest to illustrate the variety of settings.

In Appendix Figure A.7, we report the distributions of predicted CATEs in each setting, which

shows that there is substantial predicted heterogeneity both between-settings and within each

setting too. In particular, sizeable shares of predicted zero- and even positive treatment effects

are observed only in the Tanzanian and Zambian subsamples. There are also substantial differ-

ences across settings in the distribution of treatment effects given predicted place of delivery,

27We estimate a causal forest using the full roll-out in Nepal and the same orthogonalization as in the main
results described above. However, to make the causal forest comparable across the five samples, the forest is
estimated on a reduced set of variables consisting of birth order, gender, maternal age, rural location, maternal
education, predicted place of delivery, and wealth quintile, as well as 14 district level variables observed in all
samples. The fit and results for this forest are shown in column (2) of Appendix Table C.2. When computing
AIPWs accounting for differences in the distribution of variables in our main Nepal sample and the five RCT
settings subsamples, we further need to drop the district-level variables from the causal forest as these otherwise
perfectly predict whether the observation is found in the main Nepal sample or not. The fit and results for this
forest are shown in column (3) of Appendix Table C.2. Restricting the set of covariates affects the forest’s overall
performance in predicting treatment effect differences, but not its ability to predict the difference in average
treatment effect between predicted home- and facility births, for instance (see column (2) relative to column (1) in
Appendix Table C.2).
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as well as within each setting for a given predicted place of delivery — again suggesting that

place of delivery is a useful but blunt proxy for the effectiveness of CHX cord cleansing at

scale.

7 Conclusion

Neonatal mortality is an increasingly large contributor to early life mortality across the

world, accounting for 45% of under-5 deaths in 2015 compared to 35% in 1980 (Wang et al.,

2016), and most neonatal deaths are believed to be preventable at comparatively low cost

(Bhutta et al., 2014). Hopes that CHX cord care would be a “game changer” (Hodgins et al.,

2013) faded away as heterogeneous findings across randomized trials led experts to question its

effectiveness at scale despite the fact that these trials, for obvious ethical reasons, cannot pro-

ceed with a pure control and may therefore underestimate the effectiveness of a CHX program

as implemented outside experimental circumstances.

In this paper, we estimate the effect of implementing a nationwide program rolling out

CHX cord care. We find that the program led to a large reduction in neonatal mortality (43

percent), driven by reduced neonatal mortality among newborns predicted to have been born at

home. This provides novel evidence of the effectiveness of CHX cord care outside an experi-

mental setting, and one of the few instances of evidence of a successful nationwide intervention

targeting neonatal mortality in a low-income country.

Using recently developed machine learning techniques, we find evidence of substantial het-

erogeneity in treatment effects in our nationally representative Nepalese observational data.

While place of delivery and average neonatal mortality are good proxies for large treatment

effects, the optimal targeting we identify implies treating more than two-and-a-half times more

births than the WHO recommendation based on these two variables, which prevailed during

2013-2022. In addition, we find no evidence that the recent 2022 revised WHO recommenda-

tion to treat only births in settings where the application of harmful substances to the umbilical

stump is common is likely to improve targeting relative to the 2013-2022 recommendation. We

indeed estimate very similar overall neonatal mortality improvements from either approach to
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targeting a similar share of newborns, and find that larger conditional treatment effects are less

strongly associated with district prevalence of harmful substance application than with home

delivery.

Our findings regarding optimal targeting come with two important caveats. First, the tar-

geting of any policy (for which treating everyone is either not affordable or not desirable due

to potential adverse consequences) should be regularly reviewed since, in many applications,

the distribution of treatment effects may evolve over time. Targeting by place of birth may,

for instance, become less appropriate if hospital quality deteriorates with increased demand

relative to supply over time or if home births become less conducive to infection due to wider

use of safe delivery kits. Second, our conclusions are based on a utilitarian criterion. But a

targeting that is optimal according to one welfare criterion (e.g., utilitarian) may not be optimal

according to a different one (e.g., one that puts unequal weights on the risks of not treating

an individual who might benefit from treatment versus treating an individual who might be

worse-off if treated).

Finally, we extrapolate the causal forest heterogeneity analysis carried out in our national

Nepalese sample to five settings in as many countries. Despite substantial differences in the

nature of the intervention and control group in- and outside trials as well as between trials, the

doubly-robust predicted effects of implementing the same program as that rolled out in Nepal

across these five settings matches the broad pattern of heterogeneous experimental results. This

bolsters our confidence in the heterogeneity analysis based on the Nepalese roll-out and its

relevance for settings outside Nepal and thus suggests that CHX may be beneficial in a much

wider set of circumstances than the current received wisdom would indicate.
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A Appendix (for Online Publication Only)

Table A.1: Programs relevant to neonatal mortality

Name Overview Implementation Detail

1 Community Based Integrated Management of multiple illnesses Rolled out to all 75 districts
Management of Childhood from birth to age 5 between 1997 and 2009
Illness (CB-IMCI)

2 Birth Preparedness Program Encourage institutional delivery, Introduced in all districts
antenatal care and preparation in 2008/2009
for complications

3 Safe Delivery Incentive Program Subsidy for 25 districts in 2006
institutional delivery then all districts from 2009

4 Aama and Newborn Program Cash incentives for 4 ANC visits Introduced in all districts
Free delivery care from 2015/16
Free sick newborn care

5 Nyano Jhola Clothes to prevent Introduced in all districts
hypothermia and infection in 2015/16

6 Rural Ultrasound Program Trained skilled birth assistants Rolled out from 2 to 14
to use portable ultrasound machine districts between 2012 and 2017

7 Nepal Agriculture and Food Combined agricultural 22 districts during
Security Project and nutritional intervention 2013-2017

8 Community Action for Improve nutrition and reduce 15 districts during
Nutrition Project (Sunaula) exposure to smoking 2012 to 2017

and indoor pollution
during pregnancy

9 Suaahara I Project Multisectorial intervention to 16 districts from 2011 then
improve nutrition from conception 41 districts from 2016
to 24 months

10a Community Based Prevent and manage newborn Rolled out from 10 to 41
Newborn Care Program (CB-NCP) infections, hypothermia and districts between 2009-14

low birth weight
Manage asphyxia
Referral of sick newborns

10b Community Based Integrated CB-NCP (10a) integrated into Rolled out from 30 to 75 districts
Management of Newborn CB-IMCI (1) between 2014/15 and 2016/17
and Childhood Illness (CB-IMNCI)

11 Chlorhexidine “Navi” (Cord) Care Introduction of CHX cord care Rolled out from 4 to 75
Program (CHX-NCP) for all births between 2009 and 2017

Source: Department of Health Services-Ministry of Health (1617), USAID (2017), Bhattarai (2017).
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Table A.2: Variable means

Mean

A. Demographics and SES
Female 0.48
First born 0.34
Second born 0.28
Third born 0.18
Parity four or higher 0.21
Mother age 15-19y 0.20
Mother age 20-24y 0.41
Mother age 25-29y 0.26
Mother age 30-34y 0.10
Mother age 35-39y 0.03
Mother age 40-45y 0.01
Ethnicity: hill brahmin 0.09
Ethnicity: hill chhetri 0.23
Ethnicity: terai brahmin/chhetri 0.01
Ethnicity: other terai caste 0.14
Ethnicity: hill dalit 0.11
Ethnicity: terai dalit 0.04
Ethnicity: newar 0.02
Ethnicity: hill janajati 0.18
Ethnicity: terai janajati 0.10
Ethnicity: muslim 0.06
Ethnicity: other 0.00
Rural 0.41
Education: no education 0.57
Education: primary 0.18
Education: secondary 0.19
Education: higher 0.06
Wealth 0-20% 0.27
Wealth 20-40% 0.22
Wealth 40-60% 0.20
Wealth 60-80% 0.17
Wealth 80-100% 0.13
Altitude in 1st quintile 0.20
Altitude in 2nd quintile 0.20
Altitude in 3rd quintile 0.19
Altitude in 4th quintile 0.20
Altitude in 5th quintile 0.20

B. Health programs
Program: CB-NCP 0.16
Program: CB-IMNCI 0.05

C. Child mortality
Child died ≤1m 0.04
Child died <1m 0.03
Child died ≤12m 0.06
Child died ≤12m & >1m 0.01

Observations 23,465
Notes: Except for the variables measuring child gender and
birth order, all variables in panel A are capturing mother char-
acteristics. Panel B. shows means for whether the child was
covered by the health programs CB-NCP and CB-IMNCI.42



Figure A.1: CHX cord application roll-out across districts over time.
Notes: Districts where CHX-NCP has been rolled out are in green. Source: JSI administrative records.

Table A.3: No effect of CHX-NCP on antenatal care and place of delivery

Dependent variable:
Place of delivery

Actual Predicted ANC visits ANC visits>p50

CHX -0.020 -0.020 0.001 -0.012
(0.027) (0.018) (0.141) (0.030)

Observations 4,955 23,581 3,966 3,966
Clusters 73 73 73 73
MDV 0.411 0.554 4.362 0.415

Notes: All specifications are estimated as linear probability models using OLS with month of birth and
district fixed effects. Standard errors clustered at the district level in parentheses. MDV is the mean
of dependent variable among untreated individuals. Asterisks indicate significance at the following
levels: ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.
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Table A.4: Balancing table. Dependent variable: CHX.

(1)

Ethnicity: hill chhetri -0.005
(0.006)

Ethnicity: terai brahmin/chhetri -0.003
(0.010)

Ethnicity: other terai caste -0.006
(0.008)

Ethnicity: hill dalit 0.006
(0.006)

Ethnicity: terai dalit 0.006
(0.010)

Ethnicity: newar 0.007
(0.010)

Ethnicity: hill janajati 0.000
(0.006)

Ethnicity: terai janajati 0.001
(0.007)

Ethnicity: muslim -0.008
(0.007)

Ethnicity: other 0.052∗∗

(0.025)
Rural -0.007∗

(0.004)
Altitude in 1st quintile 0.013

(0.011)
Altitude in 2nd quintile 0.003

(0.009)
Altitude in 3rd quintile -0.007

(0.007)
Altitude in 4th quintile -0.000

(0.007)
Education: no education 0.016

(0.011)
Education: primary 0.021∗

(0.012)
Education: secondary 0.014

(0.010)
Wealth 0-20% -0.005

(0.006)
Wealth 20-40% 0.002

(0.006)
Wealth 40-60% -0.003

(0.005)
Wealth 60-80% -0.004

(0.006)
Female 0.000

(0.002)
First born 0.001

(0.004)
Second born -0.003

(0.004)
Third born -0.006

(0.004)
Continued on next page
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Continued from previous page

(1)

Mother age 15-19y -0.026
(0.027)

Mother age 20-24y -0.027
(0.027)

Mother age 25-29y -0.026
(0.027)

Mother age 30-34y -0.028
(0.028)

Mother age 35-39y -0.026
(0.029)

Program: CB-NCP 0.373∗∗∗

(0.069)
Program: CB-IMNCI -0.063

(0.082)
Constant 0.095∗∗∗

(0.033)

Notes: The specifications are estimated with district and month
of birth fixed effects. Standard errors clustered at the district
level in parentheses. Asterisks indicate significance at the fol-
lowing levels ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.

45



Table A.5: Effect of CHX-NCP on neonatal mortality - All coefficients

Dependent variable: mortality

month ∈ [0,1] month ∈ ]1,12] month ∈ [0,12]

(1) (2) (3) (4) (5) (6) (7)

CHX -0.014∗∗ -0.018∗∗∗ -0.020∗∗ 0.001 -0.019∗∗

(0.006) (0.006) (0.009) (0.004) (0.008)

Female -0.014∗∗∗ -0.016∗∗∗ -0.020∗∗∗ -0.001 -0.016∗∗∗

(0.003) (0.003) (0.004) (0.002) (0.004)

First born 0.003 0.002 0.090∗∗∗ -0.001 0.002

(0.006) (0.006) (0.015) (0.003) (0.006)

Second born -0.007 -0.009 0.060∗∗∗ 0.001 -0.006

(0.005) (0.005) (0.011) (0.003) (0.005)

Third born -0.008 -0.009 0.032∗∗∗ 0.002 -0.006

(0.005) (0.005) (0.007) (0.003) (0.005)

Mother age 15-19y 0.019 0.020 -0.038 0.019∗∗∗ 0.038∗

(0.020) (0.026) (0.032) (0.004) (0.022)

Mother age 20-24y -0.003 -0.004 -0.034 0.011∗∗∗ 0.007

(0.019) (0.026) (0.031) (0.003) (0.021)

Mother age 25-29y -0.011 -0.013 -0.019 0.012∗∗∗ -0.002

(0.019) (0.025) (0.030) (0.003) (0.021)

Mother age 30-34y -0.008 -0.010 0.004 0.009∗∗∗ 0.000

(0.020) (0.025) (0.028) (0.002) (0.021)

Mother age 35-39y -0.006 -0.009 0.009 0.009∗∗ -0.001

(0.020) (0.025) (0.025) (0.004) (0.023)

Ethnicity: hill chhetri -0.005 -0.005 0.003 -0.002

(0.005) (0.005) (0.003) (0.004)

Ethnicity: terai brahmin/chhetri 0.002 -0.013 0.001 0.001

(0.015) (0.011) (0.005) (0.018)

Ethnicity: other terai caste 0.002 0.003 0.006 0.009

(0.008) (0.009) (0.004) (0.007)

Ethnicity: hill dalit -0.004 -0.003 0.001 -0.003

(0.006) (0.006) (0.004) (0.007)

Ethnicity: terai dalit 0.019 0.023∗ 0.011∗∗ 0.031∗∗

(0.011) (0.013) (0.005) (0.013)

Ethnicity: newar 0.003 0.003 0.007 0.009

(0.008) (0.009) (0.006) (0.010)

Ethnicity: hill janajati -0.006 -0.005 0.004 -0.002

(0.006) (0.006) (0.002) (0.006)

Ethnicity: terai janajati 0.007 0.008 0.009∗∗ 0.018∗∗

(0.007) (0.008) (0.004) (0.009)

Ethnicity: muslim -0.006 -0.008 0.011∗∗∗ 0.005

(0.011) (0.012) (0.003) (0.012)

Ethnicity: other 0.002 0.003 -0.003 -0.000

Continued on next page
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(1) (2) (3) (4) (5) (6) (7)

(0.020) (0.023) (0.004) (0.022)

Rural 0.003 0.003 0.003∗∗ 0.007∗

(0.003) (0.004) (0.001) (0.004)

Altitude in 1st quintile -0.014 -0.018 0.020∗∗∗ 0.005

(0.012) (0.014) (0.007) (0.016)

Altitude in 2nd quintile -0.026∗∗ -0.031∗∗ 0.018∗∗∗ -0.009

(0.011) (0.013) (0.006) (0.014)

Altitude in 3rd quintile -0.015∗ -0.017∗∗ 0.013∗∗ -0.001

(0.008) (0.008) (0.005) (0.009)

Altitude in 4th quintile -0.007 -0.008 0.002 -0.004

(0.007) (0.007) (0.005) (0.009)

Education: no education 0.018∗∗∗ 0.021∗∗∗ 0.002 0.020∗∗∗

(0.005) (0.006) (0.003) (0.006)

Education: primary 0.008∗ 0.011∗∗ 0.001 0.010∗

(0.005) (0.005) (0.003) (0.006)

Education: secondary 0.007∗ 0.008 0.001 0.009∗

(0.004) (0.005) (0.003) (0.005)

Wealth 0-20% 0.017∗∗ 0.016∗∗ 0.013∗∗∗ 0.030∗∗∗

(0.007) (0.008) (0.003) (0.008)

Wealth 20-40% 0.019∗∗∗ 0.018∗∗∗ 0.004 0.023∗∗∗

(0.005) (0.006) (0.003) (0.006)

Wealth 40-60% 0.013∗∗∗ 0.013∗∗ 0.002 0.014∗∗

(0.005) (0.005) (0.003) (0.005)

Wealth 60-80% 0.004 0.003 -0.000 0.003

(0.004) (0.004) (0.003) (0.005)

Program: CB-NCP 0.006 0.008 0.018∗ 0.003 0.010

(0.006) (0.008) (0.009) (0.003) (0.008)

Program: CB-IMNCI -0.003 -0.001 0.016 0.013∗∗ 0.012

(0.006) (0.008) (0.014) (0.006) (0.009)

CHXt−6 0.002 -0.001

(0.011) (0.011)

Constant 0.042∗∗∗ 0.039∗ 0.042∗∗∗ 0.042 0.028 -0.021∗∗∗ 0.019

(0.001) (0.021) (0.000) (0.027) (0.033) (0.007) (0.024)

Observations 23,465 23,465 20,321 20,321 21,209 22,571 22,571

Clusters 73 73 73 73 73 73 73

Control mean of dep. var 0.042 0.042 0.042 0.042 0.045 0.015 0.058

Sample All All Pre Pre All All All

Controls No Yes No Yes Yes Yes Yes

Month of birth FE Yes Yes Yes Yes Yes Yes Yes

District FE Yes Yes Yes Yes No Yes Yes

Mother FE No No No No Yes No No
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Notes: All specifications are estimated as linear probability models using OLS. Except for the mother FE specifi-
cation, a “Yes” in the “Controls” row indicates that the regression also includes the full set of demographic, SES,
and program controls. Demographic controls include birth order (three indicators), five year maternal age group
indicators, and gender. SES controls include education (three indicators), wealth (four indicators), rural indicator,
altitude quintile indicators, and ethnicity indicators. Program controls include controls for the CB-NCP and CB-
IMNCI health programs. The mother FE specification excludes the SES controls as these are mother-invariant.
MDV is the mean of dependent variable among untreated individuals. Standard errors clustered at the district level
in parentheses. Asterisks indicate significance at the following levels: ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.
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Figure A.2: Event study chart

Notes: The chart shows the estimates of a regression of an indicator variable for the child dying within
one month of birth on the full set of month of birth and district fixed effects, the full set of control
variables (see notes for Table 1) as well as quarter to the introduction of CHX-NCP program indicator
variables. The specification is binned at 20 quarters to treatment start and 20 quarters after treatment
start, such that the indicator for minus and plus 20 quarters is equal to one ≥ 20 quarters to treatment
start and ≥ 20 quarters after treatment start, respectively. The chart shows the coefficients on the
quarter to treatment indicators and associated 95% confidence intervals.
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coverage
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Table A.6: Predicting home deliveries

DHS 2016 DHS 1996-2016
Logit LPM Logit LPM

(1) (2) (3) (4)

Female 0.004 0.006 0.003 0.003
(0.012) (0.012) (0.004) (0.004)

First born -0.248∗∗∗ -0.267∗∗∗ -0.184∗∗∗ -0.203∗∗∗

(0.026) (0.027) (0.009) (0.012)
Second born -0.090∗∗∗ -0.112∗∗∗ -0.085∗∗∗ -0.082∗∗∗

(0.019) (0.022) (0.007) (0.008)
Third born -0.022 -0.029 -0.044∗∗∗ -0.036∗∗∗

(0.017) (0.019) (0.007) (0.006)
Mother age 15-19y 0.069 0.067 0.130∗∗∗ 0.151∗∗∗

(0.062) (0.065) (0.023) (0.019)
Mother age 20-24y 0.034 0.039 0.088∗∗∗ 0.094∗∗∗

(0.059) (0.063) (0.022) (0.017)
Mother age 25-29y 0.015 0.018 0.045∗∗ 0.046∗∗∗

(0.057) (0.062) (0.021) (0.015)
Mother age 30-34y -0.048 -0.046 0.018 0.020

(0.059) (0.064) (0.020) (0.015)
Mother age 35-39y -0.040 -0.048 0.004 0.005

(0.060) (0.064) (0.024) (0.017)
Rural 0.120∗∗∗ 0.130∗∗∗ 0.115∗∗∗ 0.171∗∗∗

(0.025) (0.029) (0.010) (0.016)
Education: no education 0.146∗∗∗ 0.137∗∗∗ 0.255∗∗∗ 0.369∗∗∗

(0.030) (0.027) (0.013) (0.017)
Education: primary 0.104∗∗∗ 0.082∗∗∗ 0.191∗∗∗ 0.302∗∗∗

(0.030) (0.026) (0.014) (0.016)
Education: secondary 0.071∗∗∗ 0.035∗ 0.102∗∗∗ 0.142∗∗∗

(0.027) (0.020) (0.012) (0.015)
Observations 4,911 4,956 26,975 26,986
Correct predictions (share) 0.759 0.761 0.726 0.719

Notes: Columns (1) and (2) are based on the recent births subsample of DHS 2016 (MoH, New ERA and ICF,
2017). In columns (3) and (4) the prediction is trained based on stacked recent births subsamples of DHS from
1996 to 2016 (Pradhan et al., 1997; MoH, New ERA and ORC Macro., 2002; MoHP, New ERA and Macro In-
ternational, 2007; MoHP, New ERA and ICF, 2011; MoH, New ERA and ICF, 2017). Columns (1) and (3) show
average marginal effects from estimating a Logit specification. Columns (2) and (4) show point estimates from
estimating a linear probability models. All regressions include district fixed effects and date of birth, defined by
Nepali month and year of birth, fixed effects. Predictions are for the 2016 recent births subsample for compara-
bility. Standard errors clustered at the district level in parentheses. Asterisks indicate significance at the following
levels ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.
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Figure A.4: Estimated propensity score for the prediction of place of delivery.
Notes: See Table A.6 for estimation details.

52



Table A.7: Placebo estimates by place of delivery. Dependent variable: mortality ∈ [0,1]

P(home birth)
<0.5 >0.5
(1) (2)

CHXt−6 -0.004 0.003
(0.013) (0.018)

Observations 7,262 13,047
Sample Pre Pre
Clusters 73 73
MDV 0.031 0.049
P-val (dif across sample) 0.743

Notes: Both specifications are estimated as linear probability models us-
ing OLS with the full set of demographic, SES, and program controls.
Demographic controls include birth order (three indicators), five year ma-
ternal age group indicators, and gender. SES controls include education
(three indicators), wealth (four indicators), rural indicator, altitude quintile
indicators, and ethnicity indicators. Program controls include controls for
the CB-NCP and CB-IMNCI health programs. All specifications are esti-
mated with district and month of birth fixed effects. We split the sample
according to the predicted place of delivery, based on the linear probability
model shown in Appendix Table A.6 Column (4). Bootstrapped standard
errors based on 200 iterations and clustered at the district level in paren-
theses. Asterisks indicate significance at the following levels: ∗ p<0.1, ∗∗

p<0.05, and ∗∗∗ p<0.01.
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Table A.8: Heterogeneity by place of birth as predicted based on stacked DHS samples

Sample

All All
P(home birth)

<0.5 >0.5
(1) (2) (3) (4)

CHX -0.018∗∗∗ -0.006 0.016∗ -0.036∗∗∗

(0.006) (0.006) (0.008) (0.010)
1[P(home birth)>0.5] 0.004

(0.006)
CHX × 1[P(home birth)>0.5] -0.024∗∗∗

(0.007)
CHX + CHX × 1[P(home birth)>0.5] -0.030∗∗∗

(0.007)
Observations 23,465 23,465 5,978 17,479
Clusters 75 75 75 75
Control mean of dep. var 0.042 0.042 0.018 0.049
P-val (dif across sample) 0.000

Notes: All specifications are estimated as linear probability models using OLS with the full set of demo-
graphic, SES, and program controls. Demographic controls include birth order (three indicators), five year
maternal age group indicators, and gender. SES controls include education (three indicators), wealth (four
indicators), rural indicator, altitude quintile indicators, and ethnicity indicators. Program controls include
controls for the CB-NCP and CB-IMNCI health programs. All specifications are estimated with district
and month of birth fixed effects. We split the sample according to the predicted place of delivery, based
on the linear probability model shown in Appendix Table A.6 Column (4). Bootstrapped standard errors
based on 200 iterations and clustered at the district level in parentheses. Asterisks indicate significance at
the following levels: ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.
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Table A.9: Testing for interactions across neonatal health programs - dependent variable:
mortality month ∈ [0,1]

(1) (2) (3) (4) (5) (6) (7) (8)

CHX -0.016∗∗∗ -0.016∗ -0.024∗∗ -0.018∗∗∗ -0.017∗ -0.024∗∗ -0.029∗∗∗

(0.006) (0.008) (0.010) (0.006) (0.009) (0.010) (0.010)
CB-NCP 0.005 0.007 0.007 0.006 0.008 0.008 0.008

(0.006) (0.008) (0.008) (0.006) (0.008) (0.008) (0.008)
CB-IMNCI -0.004 -0.011 -0.011 -0.003 -0.012 -0.012

(0.006) (0.010) (0.012) (0.006) (0.010) (0.011)
CB-NCP × CHX -0.004 0.005 -0.006 0.003

(0.010) (0.011) (0.010) (0.011)
CB-IMNCI × CHX 0.010 0.025 0.012 0.025

(0.010) (0.017) (0.010) (0.017)
CB-IMNCI × NCP 0.001 0.002

(0.012) (0.013)
CB-IMNCI×CB-NCP
× CHX

-0.022 -0.020

(0.019) (0.020)
Observations 23,465 23,465 23,465 23,465 23,465 23,465 19,225 20,017
Clusters 73 73 73 73 73 73 73 73
MDV 0.042 0.042 0.042 0.042 0.042 0.042 0.044 0.043

Demogr. & SES
Controls No No No Yes Yes Yes Yes Yes

Notes: Controls include birth order (three indicators), five year maternal age group indicators, gender, education
(three indicators), wealth (four indicators), rural indicator, altitude quintile indicators, and ethnicity indicators. All
specifications are estimated with district and month of birth fixed effects. Standard errors clustered at the district
level in parentheses. MDV is the mean of the dependent variable among untreated individuals. Restricted sample
to observations with CB-NCP=0 and CB-IMNCI=0 in Column (7) and to CHX=0 and CB-IMNCI=0 in Column
(8). Asterisks indicate significance at the following levels: ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.
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Figure A.5: Contribution to CATE variation
Notes: This Figure shows the R-squared from estimating an ordinary least squares regression of the
CATE on the covariates listed on the vertical axis. The “3 WHO variables” are: predicted place of
delivery indicator, district NMR and district average harmful substances application.

Figure A.6: Doubly robust ATEs by tertiles of CATEs
Notes: The Augmented Inverse-Propensity Weighted (AIPW) Average Treatment Effects are estimated
for tertiles of the conditional average treatment effects shown in Figure 3. The p-values for H0 of equal
treatment effects in the first and third tertiles are : p<0.001 for the full sample ( p<0.001 for predicted
home births and p<0.001 for predicted facility births).
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Table A.10: Variables selected by optimal policies

Unconstrained Constrained
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Birth order 0 0 0 1 0 0 1
District: antenatal visits 8 4 4 0 0 0 16
District: antenatal visits in 1. trimester 0 2 2 3 10 10 27
District: antenatal visits≥4 0 0 0 2 8 8 18
District: control NMR 0 2 2 1 2 2 9
District: delivery assisted by doc/nurse 0 1 1 0 1 1 4
District: delivery home 1 0 1 5 0 0 7
District: delivery in public facility 0 6 6 0 7 7 26
District: delivery private 1 1 1 0 0 0 3
District: full immunization 5 0 0 0 1 1 7
District: harmful substances 0 1 0 0 0 0 1
District: iron tablets during pregn. 3 1 1 2 0 0 7
District: postnatal check within 2days 0 3 3 0 0 0 6
District: prenatal care by doc/nurse 0 3 3 0 0 0 6
District: started breastfeeding ≤ 1h 1 4 4 0 0 0 9
District: tetanus protected 0 2 2 0 0 0 4
District: unassisted delivery 0 0 0 5 1 1 7
Maternal age 5 0 0 1 0 0 6
Maternal education 5 0 0 10 0 0 15
Predicted home delivery 1 0 0 0 0 0 1

Notes: this table shows how often each variable is included in the optimal policy across the ten folds
for the six optimal policies indicated by the column headers.
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Table A.11: Extrapolating the effect of CHX-NCP across CHX trial locations

Bangladesh Nepal Pakistan Tanzania Zambia
2007-2009 2002-2005 2007 2011-2014 2011-2013

RCT Data:
Control Neo. Mortality 0.028 0.019 0.036 0.012 0.014
Treatment Effect -0.006 -0.005 -0.013 -0.001 0.002

DHS Data:
A. Doubly Robust Treatment Effects

AIPW -0.021∗∗ -0.023∗∗∗ -0.038∗∗∗ -0.016 -0.007
(0.009) (0.005) (0.005) (0.017) (0.005)

B.Variable means
CATE -0.017 -0.023 -0.024 -0.004 -0.004
Neonatal mortality 0.033 0.051 0.044 0.019 0.020
Predicted home delivery 0.942 0.642 0.909 0.239 0.061
Female 0.488 0.555 0.464 0.553 0.488
Mother age 15-19y 0.196 0.168 0.071 0.086 0.153
Mother age 20-24y 0.374 0.453 0.270 0.233 0.253
Mother age 25-29y 0.214 0.182 0.306 0.248 0.233
Mother age 30-34y 0.071 0.036 0.071 0.145 0.114
Mother age 35-39y 0.014 0.000 0.052 0.088 0.046
Birth order: 1 0.239 0.204 0.179 0.162 0.194
Birth order: 2 0.243 0.263 0.135 0.147 0.200
Birth order: 3 0.204 0.197 0.167 0.122 0.145
Birth order: ≥4 0.314 0.336 0.520 0.569 0.460
Education: none 0.325 0.854 0.873 0.395 0.061
Education: primary 0.353 0.073 0.079 0.258 0.535
Education: secondary 0.298 0.058 0.048 0.347 0.356
Education: higher 0.024 0.015 0.000 0.000 0.048
Wealth quintile: 1 0.294 0.058 0.631 0.019 0.131
Wealth quintile: 2 0.214 0.234 0.222 0.189 0.256
Wealth quintile: 3 0.195 0.409 0.091 0.277 0.288
Wealth quintile: 4 0.160 0.248 0.056 0.368 0.177
Wealth quintile: 5 0.138 0.051 0.000 0.147 0.148
Rural 1.000 0.409 1.000 0.889 0.704

Observations 637 137 252 476 854
Notes: Average CATE based on predictions using the causal forest estimated on the country-wide Nepal sample
using a reduced set of variables as shown in Appendix Table C.2 Column (2). AIPW based on predictions using
the causal forest estimated on the country-wide Nepal sample using a reduced set of variables which do not
perfectly predict whether an observation is from the country-wide Nepalese sample or the RCT samples as shown
in Appendix Table C.2 Column (3). The table also shows the neonatal mortality rate observed in the relevant DHS
subsample and the averages of the demographic and SES variables used in the forests. The samples are taken
from the same years and regions as those covered in the respective trials. Namely, we include 2007-2009 births
in rural areas of Sylhet from DHS Bangladesh 2011, 2002-2005 births in Sarlahi district from DHS Nepal 2016,
2007 births in rural areas of Sindh from DHS Pakistan 2012-13, 2011-2014 births in Pemba Island from DHS
Tanzania 2015-16, and 2011-2013 births in Southern Province from DHS Zambia 2013-14. Standard errors for
the doubly-robust average treatment effect in parenthesis. Asterisks indicate significance at the following levels:
∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.
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Figure A.7: Distribution of predicted CATEs across DHS samples matching the RCT sites
Notes: The distributions are estimated using bandwidth selected based on Silverman’s ‘rule of thumb’
(Silverman, 1986) and a gaussian kernel.
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B Other Specification Checks

We also estimated a number of alternative specifications for Equation (1) and found no no-
table difference in estimates. In these alternative specifications, we removed all controls other
than district and time effects, varied the subsets of controls included, added controls for addi-
tional health and nutritional programs, in-utero exposure to the severe earthquake which took
place in 2015, controlled for an interaction term between baseline district neonatal mortality
and a linear trend in month-year date of birth, and varied the sample in two ways: (i) changing
the time period covered by the data — adding and removing five year cohorts to our baseline
25-year panel — and (ii) removing or not children for whom the district of birth cannot be es-
tablished with certainty because their mothers were currently visiting the household surveyed
or because the woman had moved to the district where she was interviewed after the CHX pro-
gram was first introduced in the country. As depicted in Figure B.1, the estimated treatment
effect is consistently between -0.010 and -0.019 across specifications and its associated p-value
only goes slightly over 0.10 in some specifications using the smallest of the six samples we
consider.

Our findings are also robust to adopting an alternative definition of neonatal mortality which
is equal to zero for children reported to have died at exactly one month old and which are
counted as having died within the neonatal period in the main analysis to allow for heaping
(Appendix Table B.1). Weighted least squares estimates using the sampling weights provided
by the DHS also lead to the same conclusions (Appendix Table B.2).

Finally, we fitted logit models to reflect the binary nature of our dependent variable of in-
terest. The estimated treatment effects on neonatal mortality are, again, similar to our main
specification and statistically significant (Appendix Table B.3), while the effect on infant mor-
tality is almost identical in magnitude but slightly less precisely estimated.
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Figure B.1: Specification curve

Notes: This chart shows estimates from running 54 different specifications defined by the combination
of markers bellow the chart. The black square marker indicates out main specification. Demographic
controls include birth order (three indicators), five year maternal age group indicators, and gender. SES
controls include education (three indicators), wealth (four indicators), rural indicator, altitude quintile
indicators, and ethnicity indicators. Program controls include controls for the CB-NCP and CB-IMNCI
health programs. Other shocks refer to the earthquake on 25 April 2015, the Community Action for
Nutrition Project (Sunaula), an Integrated Nutrition Program (Suaahara), and the Safe Delivery Incen-
tive Program. Initial NMR × CMC is the initial neonatal mortality times a quadratic time trend. The
rows ”>=2044”, ”>=2049”, and ”>=2054” indicate the birth cohorts included, in Nepali calendar
years. ”No mobility” indicates that we restrict the sample to individuals who have not moved in the
last eight years. The confidence intervals are based on standard errors clustered at the district level.
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Table B.1: Effect of CHX-NCP on neonatal mortality excluding heaping at one month

Dependent variable: mortality

month ∈ [0,1[
(1) (2) (3) (4) (5)

CHX -0.011∗∗ -0.014∗∗ -0.014∗

(0.005) (0.006) (0.008)
CHXt−6 0.003 0.001

(0.010) (0.011)
Observations 23,552 23,552 20,324 20,324 21,293
Clusters 73 73 73 73 73
Control mean of dep. var 0.037 0.037 0.037 0.037 0.039

Sample All All Pre Pre All
Controls No Yes No Yes Yes
Month of birth FE Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes No
Mother FE No No No No Yes

Notes: All specifications are estimated as linear probability models using OLS. Except for the mother FE specifi-
cation, a “Yes” in the “Controls” row indicates that the regression also includes the full set of demographic, SES,
and program controls. Demographic controls include birth order (three indicators), five year maternal age group
indicators, and gender. SES controls include education (three indicators), wealth (four indicators), rural indicator,
altitude quintile indicators, and ethnicity indicators. Program controls include controls for the CB-NCP and CB-
IMNCI health programs. The mother FE specification excludes the SES controls as these are mother-invariant.
MDV is the mean of dependent variable among untreated individuals. Standard errors clustered at the district level
in parentheses. Asterisks indicate significance at the following levels: ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.
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Table B.2: Effect of CHX-NCP on neonatal mortality using survey weights

Dependent variable: mortality

month ∈ [0,1] month ∈ ]1,12] month ∈ [0,12]

(1) (2) (3) (4) (5)

CHX -0.015∗∗∗ -0.017∗∗∗ -0.019∗∗ 0.001 -0.018∗∗

(0.005) (0.006) (0.009) (0.005) (0.008)
CHXt−6 -0.003 -0.005

(0.012) (0.012)
Observations 23,465 23,465 20,321 20,321 21,209 22,571 22,571
Clusters 73 73 73 73 73 73 73
MDV 0.041 0.041 0.041 0.041 0.044 0.013 0.055

Sample All All Pre Pre All All All
Controls No Yes No Yes Yes Yes Yes
Month of birth FE Yes Yes Yes Yes Yes Yes Yes
District FE Yes Yes Yes Yes No Yes Yes
Mother FE No No No No Yes No No

Notes: All specifications are estimated as linear probability models using weighted least squares. Except for the
mother FE specification, a “Yes” in the “Controls” row indicates that the regression also includes the full set
of demographic, SES, and program controls. Demographic controls include birth order (three indicators), five
year maternal age group indicators, and gender. SES controls include education (three indicators), wealth (four
indicators), rural indicator, altitude quintile indicators, and ethnicity indicators. Program controls include controls
for the CB-NCP and CB-IMNCI health programs. The mother FE specification excludes the SES controls as
these are mother-invariant. MDV is the mean of dependent variable among untreated individuals. Standard errors
clustered at the district level in parentheses. Asterisks indicate significance at the following levels: ∗ p<0.1, ∗∗

p<0.05, and ∗∗∗ p<0.01.
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Table B.3: Effect of CHX-NCP on neonatal mortality - conditional logit and logit estimates

Dependent variable: mortality

month ∈ [0,1] month ∈ ]1,12] month ∈ [0,12]

(1) (2) (3) (4) (5) (6) (7)

A. Conditional Logit (beta coefficients)

main
CHX -0.371∗ -0.538∗∗ -1.163∗∗∗ 0.304 -0.373

(0.205) (0.236) (0.360) (0.409) (0.230)
CHXt−6 0.139 0.027

(0.357) (0.378)
Observations 21,750 21,750 18,677 18,677 3,071 13,961 21,975

B. Logit (marginal effects)

CHX -0.015∗ -0.021∗∗ 0.005 -0.019
(0.008) (0.009) (0.006) (0.012)

CHXt−6 0.006 0.001
(0.015) (0.016)

Observations 21,750 21,750 18,677 18,677 13,961 21,975

Sample All All Pre Pre All All All
Controls No Yes No Yes Yes Yes Yes
Month of birth FE Yes Yes Yes Yes Yes Yes Yes
Year of birth FE No No No No No Yes No
District FE Yes Yes Yes Yes No Yes Yes
Mother FE No No No No Yes No No

Notes: Except for the mother FE specification, a “Yes” in the “Controls” row indicates that the regression also
includes the full set of demographic, SES, and program controls. Demographic controls include birth order (three
indicators), five year maternal age group indicators, and gender. SES controls include education (three indicators),
wealth (four indicators), rural indicator, altitude quintile indicators, and ethnicity indicators. Program controls
include controls for the CB-NCP and CB-IMNCI health programs. The mother FE specification excludes the
SES controls as these are mother-invariant. In Column (6) we include year of birth fixed effects instead of month
of birth effect because otherwise the variance-covariance matrix is highly singular in panel A, preventing the
computation of clustered standard errors. However, point-estimates are very similar if we include month of birth
fixed effects instead (0.282 in panel A and 0.006 in panel B). MDV is the mean of dependent variable among
untreated individuals. Standard errors clustered at the district level in parentheses. Asterisks indicate significance
at the following levels: ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.
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C Details of the Machine Learning Procedure

C. 1 Training the Causal Forest

To assess treatment effect heterogeneity we train a causal forest using the grf package in R
(Athey et al., 2019; Tibshirani et al., 2021). Concretely, we proceed in the following two steps.

Step 1 We use regression forests to estimate the following two conditional mean functions

µW = E[W |X = x] (2)

µY = E[Y |X = x] (3)

where W is equal to 1 if the child was born in a district and month where the CHX
program was implemented and 0 otherwise, Y is 1 if the child died within the first month
after birth and 0 otherwise, and X is a set of indicator variables capturing the district
of birth, the month-year date of birth, whether the CB-IMNCI program is implemented,
and whether CB-NCP is implemented in the district. Using the fitted conditional mean
functions we construct the residuals, W −µW and Y −µY .

Step 2 We use the residuals from the first step to train a causal forest which we use to estimate
the conditional average treatment effects (CATEs):

τ(X) = E[Y (1)−Y (0)|X = x] (4)

where Y () are the potential outcomes and X contains birth order, maternal education,
maternal age, wealth, district, altitude, rural, predicted place of delivery, health programs,
district, ethnicity; and district-level averages for: antenatal care (ANC) visits (timing
and number), whether iron tablets were received during ANC visits, tetanus protection,
place of delivery, postnatal visits, immunization rate, neonatal mortality, nurse or doctor-
assisted delivery, and whether the baby was considered small at birth.

For the categorical variables (ethnicity and district) we use the sufficient representation
approach where we compute and include group means of the non-categorical variables
based on the groups defined by the categorical variables.

In training the causal forest we tune all parameters by cross-validation. For non-tuned
parameters we use the default settings, except that we set the forest to be clustered at
the district level and we allow clusters to have different weights. The latter setting has
very little practical implication in our setting. The chosen parameter settings are listed in
Table C.1.

Having specified the parameter settings, we grow a tree as follows:
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(i) We sample 50% of the original analysis sample and 30 of the variables.

(ii) The sample selected in (i) is split into two equally sized sub-samples. One sub-
sample is used to find the splitting structure of the tree. The second sample is used
for populating the trees.

(iii) The sample for splitting found in (ii) is split into two groups (nodes) using the vari-
able among the 30 selected in (i) that creates the best split. The best split maximizes
treatment effect heterogeneity across the two groups and minimizes the variance in
treatment effect heterogeneity within the groups.

(iv) The tree is grown by repeating step (iii) on the created groups until there is no valid
split (for example if the number of observations is smaller than 5) or if there is no
split that improves the fit sufficiently. A group that is not split further is called a
leaf.

(v) Using the splitting structure found in (iv) the tree is populated using the second
sub-sample created in (ii) and the outcomes are predicted based on these observa-
tions. In other words the hold out sub-sample for populating the trees runs through
the decision tree (the splitting) and these observations are then used to obtain an
estimate of the leaves’ treatment effects.

Steps (i) to (v) create a tree and these five steps are repeated 2000 times to create the
forest. Having created the forest, an observation’s predicted conditional treatment effect
(CATE) is created based on the average predicted outcome for the leaves the observation
ends up in across all trees where this observation was not used to split and populate the
trees, i.e., based on the out-of-bag prediction.

Table C.1: Causal Forest Settings

Setting Value Selection criteria

Number of trees 2000 Default
Clustering District Choice
Fraction of sample used to grow each tree 0.5 Cross-validation
Number of variables considered for each split 30 Cross-validation
Minimum size of a leaf node 5 Cross-validation
Fraction of sample used for splitting 0.5 Cross-validation
Prune empty leaves True Cross-validation
Maximum imbalance of a split (alpha) 0.05 Cross-validation
Penalization of imbalance splits 0 Cross-validation

Note: The table shows the parameter settings for the main causal forest. None of the parameters selected by
cross-validation are different to the default setting.
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C. 2 Distribution of propensity scores and covariates

Figure C.1 shows the distribution of propensity scores (i.e., the estimated values of the µW from
Step 1 described above). These scores should be between 0 and 1 (not including 0 and 1), which
is the case in our setting.

Figure C.1: Propensity scores for causal forest

Another important condition for the causal forest is that the features have common support
across treatment status. Figures C.2 to C.5 suggest that this is the case in our setting.
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Figure C.2: Inverse-propensity score weighted distributions treated and control observations
for individual covariates

Notes: This chart shows the distributions of all district level demeaned covariates by treatment sta-
tus. Each observation is weighted by 1 divided by the estimated propensity for observing the actual
treatment status.
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Figure C.3: Inverse-propensity score weighted distributions treated and control observations
for district covariates

Notes: This chart shows the distributions of all district level demeaned covariates by treatment sta-
tus. Each observation is weighted by 1 divided by the estimated propensity for observing the actual
treatment status.
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Figure C.4: Inverse-propensity score weighted distributions across treated and control
observations for ethnicity demeaned covariates

Notes: This chart shows the distributions of all district level demeaned covariates by treatment sta-
tus. Each observation is weighted by 1 divided by the estimated propensity for observing the actual
treatment status.
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C. 3 Alternative causal forest specifications

In Table C.2 we show results for three different specifications of the causal forest. Column
(1) shows the main forest using the settings described above. Column (2) shows the results
from training a forest using a smaller set of variables in step 2. This specification is used to
obtain predictions of the CATEs for the five RCT locations. Column (3) shows the result of
a specification based on the same variables used in specification (2), except for the district
level variables, which perfectly predict whether the observation is in the main analysis sample
(countrywide Nepal) or in the samples drawn from DHSs carried out in the RCT locations.
This last specification is used to allow us to obtain the doubly-robust average treatment effects
reported in Table A.11.
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Table C.2: Causal forest specifications for extrapolation exercise - diagnostic test and average
treatment effects

Overlapping Overlapping
Main variables variables w/out

dist. averages
(1) (2) (3)

A. Omnibus diagnostic test for forest fit
Mean Forest Prediction 1.123∗∗∗ 1.078∗∗∗ 1.051∗∗∗

(0.255) (0.253) ( 0.235)
Differential Forest Prediction 0.677∗ 0.312 0.205

(0.479) (0.385) (0.217)

B. Doubly Robust Average Treatment Effects
Full sample -0.019∗∗∗ -0.020∗∗∗ -0.021∗∗∗

(0.003) (0.003) (0.003)
Predicted facility births -0.007∗∗ -0.008∗∗ -0.007∗

(0.004) (0.004) (0.004)
Predicted home births -0.030∗∗∗ -0.031∗∗∗ -0.033∗∗∗

(0.004) (0.004) (0.003)
Notes: The table shows results from estimating the causal forest using three different sets of variables. All speci-
fications are based on the same orthogonalization based on district fixed effects, month-year of birth fixed effects
as well as indicators for the CB-IMNCI and CB-NCB programs. Column (1) shows the results for the main spec-
ification where the forest is built based on indicators for CB-IMNCI and CB-NCB health programs, indicators for
wealth and altitude quintiles, indicators for maternal education, indicators for birth order, indicators for maternal
age group, a rural indicator, a child gender indicator, an indicator for predicted home delivery, and district level av-
erages of: antenatal care (ANC) visits (timing and number), whether iron tablets were received during ANC visits,
tetanus protection, place of delivery, postnatal visits, immunization rate, neonatal mortality rate, delivery support
by a nurse or doctor, and share of newborns considered small at births. Moreover, following the means-encoding
approach presented in Johannemann et al. (2019), in (1) the categorical variables district and ethnicity are included
through demeaned versions of the other variables by, respectively, district and ethnicity. In Column (2) the forest
is built on the same set of variables as in (1) except for the ethnicity and district demeaned variables, the indicators
for the CB-NCB and CB-IMNCI programs, the district level measure of iron tablets received, tetanus protection,
the measure of timing of antenatal visits, and postnatal visits, which are either inapplicable outside Nepal (in the
case of the health programs) or not consistently available across all DHS location samples. Column (3) is showing
results for a forest built only on birth order, gender of the child, maternal age, maternal age indicators, maternal
education indicators, wealth quintile, and predicted place of delivery. Standard errors clustered at the district level
in parentheses. Following Athey et al. (2019), the p-values for the omnibus diagnostic test are for the one-sided
hypothesis test. Asterisks indicate significance at the following levels ∗ p<0.1, ∗∗ p<0.05, and ∗∗∗ p<0.01.
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Figure C.5: Inverse-propensity score weighted distributions across treated and control
observations for district demeaned covariates

Notes: This chart shows the distributions of all district level demeaned covariates by treatment sta-
tus. Each observation is weighted by 1 divided by the estimated propensity for observing the actual
treatment status.
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